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1. INTRODUCTION

While traditional analog systems still form the vast majority of television
sets today, production studios, broadcasters and network providers have been
installing digital video equipment at an ever-increasing rate. The border line
between analog and digital video is moving closer and closer to the consumer.
Digital satellite and cable service have been available for a while, and re-
cently terrestrial digital television broadcast has been introduced in a number
of locations around the world.



Analog video systems, which have been around for more than half a century
now, are among the most successful technical inventions measured by their
market penetration (more than 1 billion TV receivers in the world) and the
time span of their widespread use. However, because of the closed-system
approach inherent to analog technology, any new functionality or processing
is utterly difficult to incorporate in the existing systems. The introduction of
digital video systems has given engineers additional degrees of freedom due
to the flexibility of digital information processing and the ever-decreasing cost
of computing power. Reducing the bandwidth and storage requirements while
maintaining a quality superior to that of analog video has been the priority in
the design of these new systems.

Many optimizations and improvements of video processing methods have
relied on purely mathematical measures of optimality, such as mean squared
error (MSE) or signal-to-noise ratio (SNR). However, these ssmple measures
operate solely on a pixel-by-pixel basis and neglect the important influence
of image content and viewing conditions on the actual visibility of artifacts.
Therefore, their predictions often do not agree well with visual perception.

In the attempt to increase compression ratios for video coding even further,
engineers have turned to vision sciencein order to better exploit the limitations
of the human visual system. As a matter of fact, there is a wide range of
applications for vision models in the domain of digital video, some of which
we outline in this chapter. However, the human visual system is extremely
complex, and many of its properties are still not well understood. While
certain aspects have aready found their way into video systems design, and
while even ad-hoc solutions based on educated guesses can provide satisfying
results to a certain extent, significant advancements of the current state of the
art will require an in-depth understanding of human vision.

Since a detailed treatment of spatial vision can be found in other chapters
of this book, our emphasis hereis on temporal aspects of vision and modeling,
which is the topic of Section 2. Then we take alook at the basic concepts of
video coding in Section 3. An overview of spatio-tempora vision modeling,
including a perceptua distortion metric developed by the authors, is given in
Section 4. We conclude the chapter by applying vision models to a number of
typical video test and measurement tasks in Section 5.

2. MOTION PERCEPTION

Motion perception is a fundamental aspect of vision and aids us in many
essential visual tasks: it facilitates depth perception, object discrimination,
gaze direction, and the estimation of object displacement. Motion, particularly
in the peripheral visua field, attracts our attention.



Vision and Video: Models and Applications 3

There are many controversial opinions about motion perception. Motion has
often been closely linked to the notion of optical flow, particularly in the work
on motion prediction for video coding. Sometimes, however, motion can be
perceived in stimuli that do not contain any actual movement, which isreferred
to as apparent motion. In light of these concepts, motion is better defined as
a psychological sensation, avisua inference, similar to color perception. The
images on the retina are just time-varying patterns of light; the evolution of
these light distributions over time is then interpreted by the visual system to
create a perception of objects moving in athree-dimensional world.

Extending spatial models for still images to handle moving pictures calls
for a close examination of the way temporally varying visual information is
processed in the human brain [73]. The design of spatio-temporal vision
models (cf. Section 4.) is complicated by the fact that much less attention of
vision research has been devoted to temporal aspects than to spatial aspects.
In this section, we take a closer look at the perception of motion and the
temporal mechanismsof the humanvisual system, in particular thetemporal and
spatio-temporal contrast sensitivity functions, temporal masking, and pattern
adaptation.

2.1 TEMPORAL MECHANISM S

Early models of spatial vision were based on the single-channel assump-
tion, i.e. the entire input is processed together and in the same way. Due to
their inability to model signal interactions, however, single-channel models
are unable to cope with more complex patterns and cannot explain data from
experiments on masking and pattern adaptation. This led to the development
of multi-channel models, which employ a bank of filters tuned to different fre-
quencies and orientations. Studies of the visual cortex have shown that many
of its neurons actually exhibit receptive fields with such tuning characteristics
[14]; serving as an oriented band-pass filter, the neuron responds to a certain
range of spatial frequencies and orientations.

Temporal mechanisms have been studied by vision researchers for many
years, but there is less agreement about their characteristics than those of spa-
tial mechanisms. It is believed that there are one temporal low-pass and one,
possibly two, temporal band-passmechanisms[19, 27, 39, 64], which are gener-
aly referred to as sustained and transient channels, respectively. Physiological
experiments confirm these results to the extent that low-pass and band-pass
mechanisms have been found [17]. However, neurons with band-pass prop-
erties exhibit a wide range of peak frequencies. Recent results also indicate
that the peak frequency and bandwidth of the mechanisms change consider-
ably with stimulus energy [18]. The existence of an actual third mechanismis
guestionable, though [19, 24].



In arecent study [19], for example, temporal mechanisms are modeled with
a two-parameter function and its derivatives. It is possible to achieve a very
good fit to a large set of psychophysical data using only this function and its
second derivative, corresponding to one sustained and one transient mechanism,
respectively. The frequency responses of the corresponding filters for atypical
choice of parameters are used and shown later in Section 4.2.2.

2.2 CONTRAST SENSITIVITY

The response of the human visual system to a stimulus depends much less
on the absolute luminance than on the relation of its local variations to the
surrounding luminance. This property isknown asWeber’s law, and contrast is
ameasure of thisrelative variation of luminance. While Weber'slaw isonly an
approximation of the actual sensory perception, contrast measuresbased onthis
concept are widely used in vision science. Unfortunately, acommon definition
of contrast suitable for al situations does not exist, not even for simple stimuli.

Mathematically, Weber contrast can be expressed as C = AL/L. In vi-
sion experiments, this definition is used mainly for patterns consisting of an
increment or decrement A L to an otherwise uniform background luminance L.

However, such asimple definition isinappropriate for measuring contrast in
complex images, because afew very bright or very dark pointswould determine
the contrast of the entireimage. Furthermore, human contrast sensitivity varies
with the adaptation level associated with the local average luminance. Local
band-limited contrast measures have been introduced to address these issues
[41, 42, 76] and have been used successfully in a number of vision models
[12, 37].

Our sensitivity to contrast depends on the color as well as the spatial and
temporal frequency of the stimuli. Contrast sensitivity functions (CSF's) are
generally used to quantify these dependencies. Contrast sensitivity is defined
astheinverse of the contrast threshold, i.e. the minimum contrast necessary for
an observer to detect a stimulus.

Spatio-temporal CSF approximations are shown in Figure 10.1. Achro-
matic contrast sensitivity is generally higher than chromatic, especially for
high spatio-temporal frequencies. The full range of colors is perceived only
at low frequencies. As spatio-temporal frequencies increase, sensitivity to
blue-yellow stimuli declines first. At even higher frequencies, sensitivity to
red-green stimuli diminishes as well, and perception becomes achromatic. On
the other hand, achromatic sensitivity decreases slightly at |ow spatio-temporal
frequencies, whereas chromatic sensitivity does not (see Figure 10.1). How-
ever, this apparent attenuation of sensitivity towards low frequencies may be
attributed to implicit masking, i.e. masking by the spectrum of the window
within which the test gratings are presented [78].
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Figure10.1 Approximationsof achromatic (left) and chromatic (right) spatio-temporal contrast
sensitivity functions [6, 32, 33].

There has been some debate about the space-time separability of the spatio-
temporal CSF. This property is of interest in vision modeling because a CSF
that could be expressed as a product of spatial and temporal components would
simplify modeling. Early studies concluded that the spatio-temporal CSF was
not space-time separable at lower frequencies [34, 47]. Kelly [31] measured
contrast sensitivity under stabilized conditions (i.e. the stimuli were stabilized
on the retina by compensating for the observers' eye movements) and fit an
analytic function to these measurements [32], which yields a very close ap-
proximation of the spatio-temporal CSF for counter-phaseflicker. 1t wasfound
that this CSF and its chromatic counterparts can a so be approximated by linear
combinations of two space-time separable components termed excitatory and
inhibitory CSF's [6, 33].

Measurements of the spatio-temporal CSF for both in-phase and conven-
tional counter-phase modulation suggest that the underlying filters are indeed
spatio-temporally separable and have the shape of low-pass exponentials [77].
The spatio-temporal interactions observed for counter-phase modulation can
be explained as a product of masking by the zero-frequency component of the
gratings.

The important issue of unconstrained eye movements in CSF models is
addressed in Chapter ??. Natural drift, smooth pursuit and saccadic eye move-
ments can be included in Kelly's formulation of the stabilized spatio-temporal
CSFusingamodel for eyevelocity [13]. Inasimilar manner, motion compensa:
tion of the CSF can be achieved by estimating smooth-pursuit eye movements
under the worst-case assumption that the observer is capable of tracking all
objects in the scene [70].
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2.3 TEMPORAL MASKING

Masking is avery important phenomenon in perception as it describesinter-
actions between stimuli (cf. Chapter ??). Masking occurs when a stimulus that
is visible by itself cannot be detected due to the presence of another. Some-
times the opposite effect, facilitation, occurs. a stimulus that is not visible by
itself can be detected due to the presence of another. Within the framework of
imaging and video applicationsit is helpful to think of the distortion or coding
noise being masked (or facilitated) by the original image or sequence acting as
background. Masking explains why similar coding artifacts are disturbing in
certain regions of an image while they are hardly noticeable elsewhere.

Masking is strongest between stimuli located in the same perceptual channel,
and many vision models are limited to this intra-channel masking. However,
psychophysical experiments show that masking also occurs between channels
of different orientations [16], between channels of different spatial frequency,
and between chrominance and luminance channels[8, 36, 56], abeit to alesser
extent.

Temporal masking is an elevation of visibility thresholds due to temporal
discontinuitiesin intensity, e.g. scene cuts. Within the framework of television,
itwasfirst studied by Seyler and Budrikis[52, 53], who concluded that threshold
elevation may last up to afew hundred milliseconds after atransition from dark
to bright or from bright to dark. In a more recent study on the visibility of
MPEG-2 coding artifacts after a scene cut, significant visual masking effects
were found only in the first subsequent frame [57]. A strong dependence on
stimulus polarity has also been noticed [7]: The masking effect is much more
pronounced when target and masker match in polarity, anditisgreatest for local
spatial configurations. Similar to to the case of spatial stimulus interactions,
the opposite of temporal masking, temporal facilitation, has been observed at
low-contrast discontinuities.

Interestingly, temporal masking can occur not only after a discontinuity
(“forward masking”), but also before. This “backward masking” may be
explained as the result of the variation in the latency of the neural signals
in the visual system as afunction of their intensity [1].

So far, the above-mentioned temporal masking effects have received much
less attention in the video coding community than their spatial counterparts.
In principle, temporal masking can be taken into account with a contrast gain
control model (cf. Section 4.2.3), as demonstrated in [21]. A video quality
metric that incorporatesforward masking eff ects by means of alow-passfiltered
masking sequence is described in [66].
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2.4 ADAPTATION

Pattern adaptation in the human visual system is the adjustment of contrast
sensitivity in response to the prevailing stimulation patterns. For example,
adaptation to patterns of a certain frequency can lead to a noticeable decrease
of contrast sensitivity around this frequency [22, 55, 71]. Together with mask-
ing, adaptation was one of the major incentives for developing a multi-channel
theory of vision. However, pattern adaptation has a distinct temporal com-
ponent to it and is not automatically taken into account by a multi-channel
representation of the input; it needs to be incorporated explicitly by adapting
the pertinent model parameters. A single-mechanism model that accounts for
both pattern adaptation and masking effects of simple stimuli was presented in
[49], for example.

An interesting study in this respect used natural images of outdoor scenes
(both distant views and close-ups) as adapting stimuli [68]. It was found that
exposure to such stimuli induces pronounced changes in contrast sensitivity.
The effects can be characterized by selective losses in sensitivity at lower to
medium spatial frequencies. Thisisconsistent with the characteristicamplitude
spectra of natural images, which decrease with frequency roughly as 1/ f.

Likewise, an examination of how color sensitivity and appearance might
be influenced by adaptation to the color distributions of images [69] revealed
that natural scenes exhibit alimited range of chromatic distributions, hence the
range of adaptation statesis normally limited aswell. However, the variability
is large enough so that different adaptation effects may occur for individual
scenes and for different viewing conditions.

3. VIDEO CONCEPTS
31 STANDARDS

TheMoving Picture Experts Group (MPEG)* isaworking group of ISO/IEC
in charge of the development of international standards for compression, de-
compression, processing, and coded representation of moving pictures, au-
dio and their combination. MPEG comprises some of the most popular and
widespread standards for video coding. The group was established in January
1988, and since then it has produced:

= MPEG-1, a standard for storage and retrieval of moving pictures and
audio, which was approved in November 1992. MPEG-1 isintended to
be generic, i.e. only the coding syntax is defined and therefore mainly the
decoding schemeis standardized. MPEG-1 defines ablock-based hybrid

1 See http://drogo.cselt.stet.it/mpeg/ for an overview of its activities.



DCT/DPCM coding scheme with prediction and motion compensation.
It also provides functionality for random accessin digital storage media.

s MPEG-2, astandardfor digital television, whichwasapprovedin Novem-
ber 1994. The video coding scheme used in MPEG-2 is again generic;
it is arefinement of the onein MPEG-1. Specia consideration is given
to interlaced sources. Furthermore, many functionalities such as scala
bility were introduced. In order to keep implementation complexity low
for products not requiring all video formats supported by the standard,
so-called “Profiles’, describing functionalities, and “Levels’, describ-
ing resolutions, were defined to provide separate MPEG-2 conformance
levels.

»  MPEG-4, astandard for multimediaapplications, whosefirst version was
approved in October 1998. MPEG-4 addresses the need for robustness
in error-prone environments, interactive functionality for content-based
access and manipulation, and a high compression efficiency at very low
bitrates. MPEG-4 achieves these goals by means of an object-oriented
coding scheme using so-called “audio-visual objects’, for example a
fixed background, the picture of a personin front of that background, the
voice associated with that person etc. The basic video coding structure
supports shape coding, motion compensation, DCT-based texture coding
aswell as a zerotree wavelet agorithm.

s MPEG-7, a standard for content representation in the context of audio-
visual information indexing, search and retrieval, which is scheduled for
approval in late 2001.

The standards being used commercialy today are mainly MPEG-1 (in older
compact discs), MPEG-2 (for digital TV and DVD’s), and H.261/H.263 (which
use related compression methods for low-bitrate communications). Some
broadcasting companiesinthe USand in Europe have already started broadcast-
ing television programs that are MPEG-2 compressed, and DVD’s are rapidly
gaining in popul arity in the home video sector. For further information on these
and other compression standards, the interested reader is referred to [4].

32 COLOR CODING

Many standards, such as PAL, NTSC, MPEG, or JPEG, are aready based
on human vision in the way color information is processed. In particular, they
takeinto account the nonlinear perception of lightness, the organization of color
channels, and the low chromatic acuity of the human visual system.

Conventional television cathode ray tube (CRT) displays have a nonlinear,
roughly exponential relationship between frame buffer RGB values or signal
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voltage and displayed intensity. In order to compensate for this, gamma cor-
rection is applied to the intensity values before coding. It so happens that the
human visual system has an approximately logarithmic response to intensity,
which isvery nearly the inverse of the CRT nonlinearity [45]. Therefore, cod-
ing visua information in the gamma-corrected domain not only compensates
for CRT behavior, but is also more meaningful perceptually.

Furthermore, it has been long known that some pairs of hues can coexistina
single color sensation, while others cannot. Thisled to the conclusion that the
sensations of red and green as well as blue and yellow are encoded in separate
visual pathways, which is commonly referred to as the theory of opponent
colors (cf. Chapter ??). It states that the human visual system decorrelates its
input into black-white, red-green and blue-yellow difference signals.

As pointed out before in Section 2.2, chromatic visual acuity is significantly
lower than achromatic acuity. In order to take advantage of this behavior,
the color primaries red, green, and blue are rarely used for coding directly.
Instead, color difference (chroma) signalssimilar to the onesjust mentioned are
computed. In component digital video, for example, the resulting color space
is referred to as Y'CCk, where Y’ encodes luminance, Cy; the difference
between blue primary and luminance, and Cy; the difference between red
primary and luminance (the primes are used here to emphasize the nonlinear
nature of these quantities due to the above-mentioned gamma correction).

The low chromatic acuity now permits a significant data reduction of the
color difference signals, which is referred to as chroma subsampling. The
notation commonly used is as follows:

= 4:4:4 denotes no chroma subsampling.

s 4:2:2 denotes chroma subsampling by a factor of 2 horizontally; this
sampling format is used in the standard for studio-quality component
digital video as defined by ITU-R Rec. 601 [29], for example.

= 4:2:0 denotes chroma subsampling by a factor of 2 both horizontally
and vertically; this sampling format is often used in JPEG or MPEG
and is probably the closest approximation of actual visual color acuity
achievable by chroma subsampling alone.

= 4:1:1 denotes chroma subsampling by afactor of 4 horizontally.

3.3 INTERLACING

As analog television was developed, it was noted that flicker could be per-
ceived at certain framerates, and that the magnitude of theflicker wasafunction
of screen brightness and surrounding lighting conditions. In a movie theater
at relatively low light levels, a motion picture can be displayed at aframe rate
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of 24 Hz, whereas a bright CRT display requires a refresh rate of more than
50 Hz for flicker to disappear. The drawback of such a high frame rate is
the high bandwidth of the signal. On the other hand, the spatial resolution of
the visual system decreases significantly at such temporal frequencies (cf. Fig-
ure 10.1). These two properties combined gave rise to a technique referred to
asinterlacing.

The concept of interlacing is illustrated in Figure 10.2. Interlacing trades
off vertical resolution with temporal resolution. Instead of sampling the video
signal at 25 or 30 frames per second, the sequence is shot at a frequency of
50 or 60 interleaved fields per second. A field corresponds to either the odd
or the even lines of a frame, which are sampled at different time instants and
displayed aternately (the field containing the even lines is referred to as the
top field, and the field containing the odd lines as the bottom field). Thus the
required bandwidth of the signal can be reduced by afactor of 2, while the full
horizontal and vertical resolution is maintained for stationary image regions,
and the refresh rate for objects larger than one scanlineis still sufficiently high.

Figure 10.2 Illustration of
interlacing. The top sequence
isprogressive; al linesof each
frame are transmitted at the

frame rate f. The bottom

1
sequence is interlaced; each
frameissplitintwo fields con-
taining the odd and the even
lines (shown in bold), respec-
tively. These fields are trans-
mitted alternately at twice the

original frame rate.

1/2f

MPEG-1 handlesonly progressivevideo, whichisbetter adapted to computer
displays. MPEG-2 on the other hand was designed as the new standard to
transmit television signals. Therefore it was decided that MPEG-2 would
support both interlaced and progressive video. An MPEG-2 bitstream can
contain aprogressive sequence encoded as asuccession of frames, aninterlaced
sequence encoded as a succession of fields, or an interlaced sequence encoded
as a succession of frames. In the latter case, each frame contains a top and
a bottom field, which do not belong to the same time instant. Based on this,
a variety of modes and combinations of motion prediction algorithms were
defined in MPEG-2.

Interlacing poses quite a problem in terms of vision modeling, especially
from the point of view of temporal filtering. It isnot only an implementation
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problem, but also a modeling problem, because identifying the signal that
is actually perceived is not obvious. Vision models have often overlooked
this issue and have taken simplistic approaches; most of them have restricted
themselves to progressive input. Newer models incorporate de-interlacing
approaches, which aim at creating a progressive video signa that has the
spatial resolution of a frame and the temporal frequency of afield. A simple
solution, which is still very close to the actual signal perceived by the human
eye, consistsin merging consecutive fields together into afull-resolution 50 or
60 Hz signal. Thisis avalid approach as each field is actually displayed for
two field periods due to the properties of the CRT phosphors. Other solutions
interpolate both spatially and temporally by upsampling the fields. Although
the latter might seem more elegant, it feeds into the vision model a signal
which is not the one that is being displayed. Reviews of various de-interlacing
techniques can be found in [15, 59].

34 ARTIFACTS

The fidelity of compressed and transmitted video sequences is affected by
the following factors:

® any pre- or post-processing of the sequence outside of the compression
module. Thiscaninclude chromasubsampling and de-interlacing, which
were discussed briefly above, or frame rate conversion. One particular
exampleis3:2 pulldown, whichisthe standard way to convert progressive
film sequences shot at 24 frames per second to interlaced video at 30
frames per second.

= the compression operation itself.

m the transmission of the bitstream over anoisy channel.

34.1 Compression Artifacts. The compression algorithms used in var-
ious video coding standards today are very similar to each other. Most of them
rely on block-based DCT with motion compensation and subsequent quantiza-
tion of the DCT coefficients. In such coding schemes, compression distortions
are caused by only one operation, namely the quantization of the DCT coeffi-
cients. Although other factors affect the visual quality of the stream, such as
motion prediction or decoding buffer, these do not introduce any distortion per
se, but affect encoding process indirectly by influencing the quantization scale
factor.

A variety of artifacts can be distinguished in a compressed video sequence:

= blockiness or blocking effect, which refers to a block pattern of size
8 x 8 in the compressed sequence. Thisis due to the 8 x 8 block DCT
quantization of the compression algorithm.
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» bad edge rendition: edgestend to befuzzy duetothe coarser quantization
of high frequencies.

= mosquito noise manifestsitself asan ambiguity in the edge direction: an
edge appearsin the direction conjugate to the actual edge. This effect is
due to the implementation of the block DCT as a succession of avertical
and a horizontal one-dimensional DCT [9].

= jagged motion can be due to poor performance of the motion estimation.
When the residual error of motion prediction istoo large, it is coarsely
quantized by the DCT quantization process.

» flickering appearswhen ascenehasahigh texture content. Textureblocks
arecompressed with varying quantization factorsover time, which results
in avisible flickering effect.

= smoothing, loss of detail are typical artifacts of quantization.

= aliasing appears when the content of the scene is above the Nyquist rate,
either spatially or temporally.

An excellent survey of the various artifacts introduced by typical compres-
sion schemes can be found in [79].

3.4.2 TransmissionErrors. A very important and often overlooked source
of distortions is the transmission of the bitstream over a noisy channel. Dig-
itally compressed video is typicaly transferred over a packet network. The
actual transport can take place over a wire or wireless, but some higher level
protocol such as ATM or TCP/IP ensures the transport of the video stream.
Most applications require the streaming of video, i.e. the bitstream needsto be
transported in such a way that it can be decoded and displayed in real time.
The bitstream is transported in packets whose headers contain sequencing and
timing information. Thisprocessisillustrated in Figure 10.3. Streams can aso
carry additional signaling information at the session level. A popular trans-
port protocol at the moment is TCP/IP. A variety of protocols are then used to
transport the audio-visual information. The real-time protocol (RTP) isused to
transport, synchronize and signal the actual media and add timing information
[51]; RTP packets are transported over UDP. The signalling istaken care of by
additional protocols such as the H.323 family from the ITU [30], or the suite
of protocols (SIP, SAP, SDP) from the Internet Engineering Task Force [50].
A comparison of these schemesis provided in [11].

Two different types of impairments can occur when transporting media over
noisy channels. Packets can be lost due to excessive buffering in intermediate
routers or switches, or they can be delayed to the point where they are not
received in time for decoding. The latter is due to the queuing algorithm in
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Figure 10.3 Illustration of avideo transmission system. Thevideo sequenceisfirst compressed
by the encoder. The resulting bitstream is packetized in the network adaptation layer, where a
header containing sequencing and synchronization data is added to each packet. The packets
are then sent over the network of choice.

routers and switches. To the application, both have the same effect: part of the
media stream is not available, thus packets are missing when they are needed
for decoding.

Such losses can affect both the semantics and the syntax of the media
stream. When the losses affect syntactic information, not only the datarelevant
to the lost block are corrupted, but also any data that depend on this syntactic
information. For example, a loss of packets containing data pertinent to an
MPEG macroblock will corrupt all following macroblocks until an end of slice
is encountered. Thisis due to the fact that the DC coefficient of a macroblock
isdifferentially predicted between macroblocks and resets at the beginning of a
dlice. Also, for each of these corrupted macroblocks, al blocksthat are motion
predicted from these will belost aswell. Hencetheloss of asingle macroblock
can affect the stream up to the next intra-coded frame. Figure 10.4 illustrates
this phenomenon.

The effect can be even more damaging when global data is corrupted. An
example of thisisthetiming informationin an MPEG stream. The system layer
specification of MPEG imposes that the decoder clock be synchronized with
the encoder clock via periodic refresh of the program clock reference sent in
some packet. Too much jitter on packet arrival can corrupt the synchronization
of the decoder clock, which can result in highly noticeable impairments.

The visual effects of such losses vary a lot among decoders depending on
their ability to deal with corrupted streams. Some decoders never recover
from certain errors, while others apply clever concealment methods in order to
minimize such effects.
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4. VISION MODELS

Modeling the human visual system is a challenging task due to its inherent
complexity; many of its properties are not fully understood even today. Its
components have been studied in detail, but putting all the pieces together for
a comprehensive model of human vision is far from trivial [73]. Quite afew
models for till images have been developed in the past; their extension to
moving pictures, however, has not received much attention until recently. In
this section, we briefly review the development of metrics. We then present
a perceptua distortion metric developed by the authors and discuss how the
performance of such systems can be evaluated in a meaningful and reliable

way.
4.1 MODELSAND METRICS

The objective for any vision model must be good agreement with experi-
mental data. Threshold experiments and preference tests represent some of the
most reliable methods available (cf. Chapter ??). Therefore, an application
making use of a vision model to measure perceptual differences in some way
provides the most direct evaluation possibility. For this reason, we focus on
vision models wrapped into distortion metrics here.

Distortion metrics need not necessarily rely on sophisticated models of the
human visua system in order to perform well. They can exploit knowledge
about the compression agorithm and the pertinent types of artifacts (cf. Sec-
tion 3.4). Considering the variety of compression agorithms available and the
rapid change of technology in this field, however, a distortion metric that is
independent of the particular algorithm is preferable in order to avoid early
obsolescence. Metrics based on human vision models are away to achievethis
technology independence, because they are the most general and potentially
the most accurate ones[73].
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Lukas and Budrikis[38] werethefirst to propose a spatio-temporal model of
the human visual system for usein avideo distortion metric. Other models and
metrics followed now and then, but only in the past few years has there been an
increasinginterest in thistopic, particularly inthe engineering community. This
is mainly due to the advent of digital video systems, which have exposed the
limitations of the techniques traditionally used for video quality measurement.

For conventional analog video systems there are well-established perfor-
mance standards. They rely on particular test signals and measurement pro-
cedures to determine parameters such as differential gain, differential phase
or waveform distortion, which can be related to perceived quality with rela-
tively high accuracy [80]. While these parameters are still useful today, their
connection with perceived quality has become much more tenuous. because
of compression, digital video systems exhibit artifacts fundamentally different
from analog video systems (see Section 3.4). The amount and visibility of
these distortions strongly depend on the actual scene content. Therefore, tra-
ditional signal quality measurements are inadequate for the evaluation of these
compression artifacts.

Given these limitations, the designers of compression agorithms have had
to resort to subjective viewing tests in order to obtain reliable ratings for the
quality of compressed imagesor video (see Section 4.3.1). Whilethesetests—if
executed properly — certainly are the best measure of “true” perceptual quality,
they are complex, time-consuming and consequently expensive. Hence, they
are often highly impractical or not feasible at all.

Looking for faster aternatives, researchers have turned to simple error mea-
suressuch asmean squared error (M SE) or signal-to-noiseratio (SNR), suggest-
ing that they would be equally valid. However, these ssimple error measures
operate solely on a pixel-by-pixel basis and neglect the important influence
of image content and viewing conditions on the actual visibility of artifacts.
Therefore, they often do not correlate well with perceived quality. These prob-
lems prompted the development of distortion metrics based on models of the
human visual system.

4.2 A PERCEPTUAL DISTORTION METRIC

We now present the perceptual distortion metric (PDM) developed by the
authors[60, 74]. Theunderlying vision model —an extension of amodel for till
images [72] —incorporates color perception, temporal and spatial mechanisms,
contrast sensitivity, pattern masking, and the response properties of neuronsin
the primary visual cortex. The PDM works as follows (see Figure 10.5): After
conversion to opponent-col ors space, each of the resulting three componentsis
subjected to a spatio-temporal perceptual decomposition, yielding anumber of
perceptual channels. They are weighted according to contrast sensitivity data
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and subsequently undergo a contrast gain control stage. Finally, all the sensor
differences are combined into a distortion measure.
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Figure 10.5 Block diagram of the PDM [74].

42.1 Color Space Conversion. Thefirst stage of the PDM performsthe
color space conversion of the video input, usually coded in Y'C; Cy, . Accord-
ing to the theory of opponent colors, the human visual system decorrelates the
input signalsfrom the cones on theretinainto black-white (B-W), red-green (R-
G) and blue-yellow (B-Y) difference signals (cf. Section 3.2). The PDM relies
on a particular opponent-colors space that is pattern-color separable [43, 44],
i.e. color perception and pattern sensitivity can be decoupled and treated in
separate stages.

422 Perceptual Decomposition. The perceptual decomposition mod-
els the multi-channel architecture of the human visual system. It is performed
firstinthetemporal and then in the spatial domain. Decomposing theinput into
anumber of spatio-temporal channelsisnecessary in order to be ableto account
for the fact that masking is strongest between stimuli of similar characteristics
(e.g. similar frequency and orientation) in subsequent stages.

Thetemporal filtersusedinthe PDM arebased on arecent model of temporal
mechanisms [19]. The design objective for these filters in the PDM was
to keep the delay to a minimum, because in some applications of distortion
metrics such as monitoring and control, a short response time is crucia. A
trade-off has to be found between an acceptable delay and the accuracy with
which the temporal mechanisms ought to be approximated. Recursive infinite
impulse response (IIR) filters fare better in this respect than (non-recursive)
finite impul se response (FIR) filters [35].

Therefore, the temporal mechanisms are modeled by two IR filters in the
PDM. They were computed by means of a least-square fit to the frequency
magnitude responses of the respective mechanisms. A filter with 2 poles and
2 zeros was fitted to the sustained mechanism, and afilter with 4 poles and 4
zeros was fitted to the transient mechanism. This has been found to yield the
shortest delay while still maintaining a good approximation of the frequency
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Figure 10.6 Frequency re-
sponses of sustained (low-
pass) and transient (band-
pass) mechanisms of vision
according to [19] (solid), and
the IR filter approximations
used in the PDM for a sam-
pling frequency of 50 Hz
(dashed).
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responses, as shown in Figure 10.6. In the present implementation, the low-
pass filters are applied to al three color channels, but the band-pass filter is
applied only to the luminance channel in order to reduce computing time. This
simplification is based on the fact that color contrast sensitivity is rather low
for high frequencies (cf. Section 2.2).

The decomposition in the spatial domain is carried out by means of the
steerable pyramid transform [54].2 This transform decomposes an image into
a number of spatial frequency and orientation bands. Its basis functions are
directional derivative operators. For use within a vision model, it has the
advantage of being rotation-invariant and self-inverting, and it minimizes the
amount of aliasing in the subbands. In the present implementation, the basis
filters have octave bandwidth and octave spacing; five subband levelswith four
orientation bands each plus one low-pass band are computed (see Figure 10.7
for an illustration). The same decomposition is used for all channels.

4.2.3 Contrast Gain Control Stage. Modeling pattern masking is one
of themost critical aspectsof video quality assessment, because the visibility of
distortionsis highly dependent on the local background. Contrast gain control
models can explain a wide variety of empirical masking data. These models
were inspired by analyses of the responses of neurons in the visual cortex of
the cat [2, 25, 26], where contrast gain control serves as a mechanism to keep
neural responses within the permissible dynamic range while at the same time
retaining global pattern information.

2 Source code and filter kernels for the steerable pyramid transform are available at
http://www.cis.upenn.edu/~eero/steerpyr.html.
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Figure 10.7 Illustration of the partitioning of the spatial frequency plane by the steerable
pyramid transform [54]. Three levels and the isotropic low-pass filter are shown. The bands at
each level are tuned to orientations of 0, 45, 90 and 135 degrees. The shaded region indicates
the spectral support of asingle subband, whose actual frequency response is shown on theright.

Contrast gain control can be realized by an excitatory nonlinearity that is
inhibited divisively by apool of responsesfrom other neurons[ 16, 58]. Masking
occurs through the inhibitory effect of the normalizing pool. A mathematical
generalization of these models facilitates the integration of many kinds of
channel interactionsand spatial pooling [67]. Introduced for luminanceimages,
this contrast gain control model can be extended to color and to sequences
[72, 74]. Inits most general form, the above-mentioned response pool may
combine coefficients from the dimensions of time, color, temporal frequency,
spatial frequency, orientation, space, and phase; in the present implementation
of the PDM, it islimited to orientation.

424 Detection and Pooling. The information residing in various chan-
nels is integrated in higher-level areas of the brain. This can be simulated
by gathering the data from these channels according to rules of probability or
vector summation, also known as pooling [46].

The pooling stage of the PDM combinesthe elementary differences between
the sensor outputs over several dimensions by means of vector summation. In
principle, any subset of dimensions can be used, depending on what kind of
result is desired. For example, pooling may be limited to single frames first
to determine the variation of distortions over time, and the total distortion can
then be computed from the values for each frame.

425 Model Fitting. Themodel contains several parametersthat haveto
beadjusted in order to accurately represent the human visual system. Threshold



Vision and Video: Models and Applications 19

data from contrast sensitivity and contrast masking experiments are used for
this procedure. In thefitting process, the input of the PDM imitates the stimuli
used in these experiments, and the free model parameters are adjusted in such
away that the output approximates these threshold curves.

Contrast sensitivity ismodeled by setting the gains of the spatial and temporal
filters such that the model predictions match empirical threshold data from
spatio-temporal contrast sensitivity experiments for both color and luminance
stimuli. While this approach may be dightly inferior to pre-filtering the B-W,
R-G and B-Y channels with their respective contrast sensitivity functions in
terms of approximation accuracy, it iseasier to implement and saves computing
time. For the B-W channels, the weights are chosen so as to match contrast
sensitivity measurements from [32]. For the R-G and B-Y channels, similar
datafrom [33] are used.

The parameters of the contrast gain control stage are determined by fitting
the model’s responses to masked gratings. For the B-W channel, empirical
data from several intra- and inter-channel contrast masking experiments from
[16] are used. For the R-G and B-Y channels, the parameters are adjusted to
fit smilar datafrom [56].

In the vector summation of the pooling process, different exponents have
beenfoundto yield good resultsfor different experiments and implementations.
In the PDM, pooling over channels and over pixels is carried out with an
exponent of 2, whereas an exponent of 4 is used for pooling over frames.

Our simulation results indicate that the overall quality of the fits to the
above-mentioned empirical data is quite good and close to the difference be-
tween measurements from different observers. Most of the effectsfound in the
psychophysical experiments are captured by the model. However, one draw-
back of this modeling approach should be noted: Because of the nonlinear
nature of the model, the parameters can only be determined by means of a
numerical iterative fitting process, which is computationally expensive.

4.3 EVALUATION

In order to evaluate vision models, subjective experiments are necessary.
Subjective ratings form the benchmark for objective metrics. However, differ-
ent applications may require different testing procedures (cf. Chapter ??) and
data analysis methods.

4.3.1 Subjective Testing. Formal subjective testing isdefined in ITU-R
Rec. 500[28], which suggests standard viewing conditions, criteriafor observer
and test scene selection, assessment procedures, and analysis methods. We
outline three of the more commonly used procedures here;
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»  Double Stimulus Continuous Quality Scale (DSCQS). Viewersareshown
multiple sequence pairsconsisting of a“reference” and a“test” sequence,
which are rather short (typically 10 seconds). The reference and test
sequence are presented twice in aternating fashion, with the order of the
two chosen randomly for each trial. Subjects are not informed which
is the reference and which is the test sequence. They rate each of
the two separately on a continuous quality scale ranging from “bad” to
“excellent”. Analysisis based on the difference in rating for each pair,
which is often calculated from an equivalent numerical scale from 0 to
100.

= Double Stimulus Impairment Scale (DSIS). As opposed to the DSCQS
method, the reference is aways shown before the test sequence, and
neither is repeated. Subjects rate the amount of impairment in the test
seguence on a discrete five-level scale ranging from “very annoying” to
“imperceptible’.

m  Single Stimulus Continuous Quality Evaluation (SSCQE) [40]. Instead
of seeing separate short sequence pairs, viewers watch a program of
typically 20-30 minutes duration which has been processed by the system
under test; the reference is not shown. Using a slider whose position is
recorded continuoudly, the subjects rate the instantaneously perceived
quality on the DSCQS scale from “bad” to “excellent”.

432 Metric Comparisons. The sequences and subjective ratings used
in demonstrations of the performance of a particular metric have been mostly
proprietary, as hardly any subjectively rated sequences are publicly available.
This has made fair comparisons of different metrics difficult.

In order to aleviatethis problem, the Video Quality Experts Group (VQEG)®
was formed in 1997. Its objectives have been to collect reliable subjective
ratings for a well-defined set of sequences and to evaluate the performance of
different video quality assessment systemswith respect to these sequences. The
emphasis of thefirst phase of VQEG was on production- and distribution-class
video, i.e. mainly MPEG-2 encoded sequences with different profiles, levels
and other parameter variations, including encoder concatenation, conversions
between analog and digital video, and transmission errors. A set of 8-second
scenes emphasizing different characteristics (e.g. spatial detail, color, motion)
was selected by independent 1abs; the scenes were disclosed to the proponents
only after the submission of their metrics. In total, 20 scenes were encoded for
16 test conditions each.

3 See http://www.crc.calvgeg/ for an overview of its activities.
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Ten different systems for video quality assessment — among them the PDM
from Section 4.2 — were submitted, and their output for each of the 320 se-
guences was recorded. In parallel, DSCQS subjective ratings for al sequences
were obtained at eight independent subjective testing labs. The statistical
methods used for the performance analysis were variance-weighted regression,
nonlinear regression, Spearman rank-order correlation, and outlier ratio. The
results of the dataanalysis show that the performance of most modelsaswell as
PSNR are statistically equivalent for al four criteria, leading to the conclusion
that no single model outperformsthe othersin all cases and for the entire range
of test sequences[48, 63]. Furthermore, no objective video quality assessment
system was abl e to achieve an accuracy comparable to the agreement between
different subject groups.

4.3.3 PDM Results. Preliminary results for the set of sequences used
in the VQEG testing effort are reported here for the perceptua distortion
metric (PDM) from Section 4.2. Figure 10.8 shows a correlation plot of the
PDM ratings vs. the mean subjective scores (DSCQS ratings) for all 320 test
sequences. Themetric performswell over all test cases: Theoverall correlation
between the mean subjective scores and the PDM ratings is close to 0.8; for
certain subsets of test cases, correlations approach 0.9. The PDM can handle
MPEG aswell as non-MPEG distortions and also behaves well with respect to
sequences with transmission errors. Most of its outliers are due to the lowest-
bitrate condition of thetest. Such performance degradationsfor clearly visible
distortions are to be expected, because the metric is based on a threshold model
of human vision.
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Figure 10.8 Correlation plot
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ings.
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Further analyses of the PDM with respect to the VQEG sequences also re-
vealed that visual quality metricswhich are essentially equivalent at the thresh-
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oldlevel can exhibit significant performance differencesfor complex sequences
depending on the implementation choices made for various components of the
PDM [75]. In particular, thiswasfound to be true for acomparison of anumber
of different color spaces, including luminance-only implementations, as well
as two pooling algorithms and their parameters.

5. VIDEO APPLICATIONS

There is awide variety of applications for vision models in video systems,
including:

= evaluation, test and comparison of video codecs,
» end-to-end testing of video transmission systems;
= perceptua video compression;

= online quality monitoring;

= encoder regulation and quality control;

= perceptual video restoration.

Coupled with appropriate video segmentation methods, the visual quality
of specific features (e.g. contours or textures) or specific compression artifacts
(e.0. blockiness) may be evaluated separately, which can be useful to tune
certain parameters of the encoder [60]. In a similar fashion, the quality of
motion rendition can be assessed [10]. We take a closer look at some of these
applicationsin this section.

5.1 OUT-OF-SERVICE TESTING

In out-of-service testing, the test operation is carried out while the system
under test is not performing service. Testing can be done at the box level,
where the equipment is disconnected from its operating mode. The test oper-
ation typically imposes a given input and compares the output to a reference.
The operator feeds a video stream into the system under test; the test equip-
ment synchronizes the output of the system under test with the original signal
and applies a metric to it. A generic out-of-service test setup is depicted in
Figure 10.9. The metrics developed by Tektronix/Sarnoff [37], KDD [23], or
NASA [66] aswell asthe perceptua distortion metric (PDM) from Section 4.2
are examples of these methods. Many of these metrics require the video stream
to be edited in such away that the output and the reference are aligned spatially
and temporally, which can be achieved by means of synchronization markers.

Out-of-service testing can be applied at the system level as well. The sys-
tem proposed in [61] offers such a solution (see Figure 10.10). The testing
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Figure 10.9 Out-of-service
T testing of a system.

methodology relies on a test pattern generator that creates customizable syn-
thetic video sequences. The synthetic sequences are used as input to a video
transmission system. Thefirst frame of the sequence contains synchronization
data as well as identification of the test sequence and all configurable param-
eters. A device connected to the decoder identifies a test sequence from the
synchronization data. Based on these it recreates the origina sequence at the
decoder site, which permits to apply a distortion metric on the decoded video
and the original signal.
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Figure 10.10 Block diagram of the Test Pattern Generator testing system.

Most of the systems submitted to the VQEG evaluation discussed in Sec-
tion 4.3.2 are designed for out-of-service testing. They are based on a compar-
ison of the distorted sequence with areference. Such a methodology is aimed
at assessing the performance of a system and evaluate it, but it is not meant to
be monitoring equipment.

5.2 IN-SERVICE TESTING

In-servicetesting isaimed at troubl eshooting equi pment whileitisin service.
The setup can beintrusive or not, depending on the objective of the test and the
nature of the testing methodology. Figure 10.11 illustrates both cases. In many
instances, in-service testing of video quality means that the original signa is
not available for comparison, which makes an accurate assessment much more
difficult. The algorithms are then based on some a priori knowledge about the
scene content or on amodeling of the video scene. Several methods have been
proposed recently [3, 5]. Most of them aim at identifying certain featuresin a
scene and assessing their distortion.
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Figure 10.11 Non-intrusive (Ieft) and intrusive (right) in-service testing setup.

Another in-service testing method was developed and implemented at the
Hewlett-Packard L aboratories (patent pending). Thetool computesaprediction
of the mean squared error in an MPEG bitstream and then applies a multi-
channel video fidelity metric to predict the visibility of the distortions. The
estimation of the MSE is based on an adaptive agorithm in the compressed
domain.

5.3 ENCODER REGULATION

An important application for video quality metrics is encoder regulation.
Most existing encoders are based on a minimization of the mean squared error.
A number of authors have proposed to use a perceptua distortion metric in the
encoding process so asto compress the sequence in away that would minimize
the visibility of the distortions. Early work includes the DCTune agorithm
[65], which tries to optimize the JPEG quantization matrix for a given picture.

Other methods attempt to jointly optimize encoding and transmission pa-
rameters so as to account for losses in the transmission of the stream. Such
a gorithmsdeterminetheoptimal rate distribution between MPEG-2 and media-
independent forward error correction (FEC) given network loss parameters
[20, 62]. The optimality is defined in terms of maximum end-to-end video
quality as measured by a vision model. This scheme was shown to outper-
form classical FEC schemes due to its adaptivity to the video material and the
network conditions.

6. CONCLUSIONS

Digital video systems have matured, and their market share has been grow-
ing continuoudly in the last few years. In this chapter we reviewed the current
standards of video technology and some of the design issues involved. Vision
models are used increasingly in the attempt to analyze the operating behavior
of such systems and to overcome their limitations. We discussed the temporal
aspects of human vision as well as a variety of modeling approaches, in par-
ticular in the domain of perceptual video quality assessment. Several metrics
have already been proposed and evaluated in the search for an international
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standard. Nevertheless, this is till a relatively young field of research, and
many challenging questions remain to be answered.
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