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ABSTRACT

Two impairment metrics presented in this paper
are for quantification of blocking artifacts and
ringing artifacts, respectively, in digitally coded
monochrome video sequences. They are based on a
multichannel vision model which has been parame-
terised using the subjective quality assessment data
recently provided by the VQEG (Video Quality Ex-
perts Group). Segmentation algorithms are used to
identify regions dominated by blocking and ringing,
respectively, and perceptual distortions in these re-
gions are summed up to form perceptual distortion
metrics. As an example, a perceptual blocking dis-
tortion metric (PBDM) is presented which is based
on a simplified distortion detection model. Subjec-
tive and objective tests have been conducted, and
the results show a strong correlation between the
objective blocking ratings and the mean opinion
scores on blocking artifacts.

1. INTRODUCTION
International standardisation activities have re-
sulted in a series of international video and as-
sociated audio coding standards, and have led to
a proliferation of applications in video communi-
cations, digital television, multimedia computing,
etc. Various video coding standards have adopted
a hybrid of motion compensated temporal differen-
tial pulse code modulation and the block discrete
cosine transform (hybrid MC/DPCM/DCT) algo-
rithm [1]. Whilst the coding algorithm exploits
statistical and psychovisual redundancies of input
video sequences to achieve a low bit rate, it will
cause visible coding distortions in reconstructed se-
quences due to its lossy coding nature. In order to
evaluate, monitor and improve the coding system
performance, it is imperative to develop quantita-
tive digital video quality/impairment metrics. It
is well known that the traditional objective mea-
sures such as the Mean Square Error (MSE) and
the Peak Signal to Noise Ratio (PSNR) do not al-
ways correlate well with the perceived digital video
picture quality [2], nevertheless they are still used
frequently to evaluate the quality of digital video.
People have long been investigating objective
quality assessment methods. The first Human Vi-
sual System (HVS) based quantitative measure of
video quality, was proposed by Lukas and Budrikis
in 1982 [3]. Recently this has become a very active
research topic as reflected by a number of quality

metrics proposed [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16]. The current VQEG activities rep-
resent international standardisation efforts towards
an objective video quality metric, with delegations
from ITU-T Study Groups 9 and 12 and ITU-R
Study Group 11 [17].

Existing quality metrics can be categorised
mainly into two groups: vision model based and fea-
ture extraction based. In general, an overall index
to the quality of a given video sequence is assigned
by each of the metrics.

Advances in vision research have provided crucial
information on the structure and the working mech-
anism of the human vision system, which have been
adopted to design quality metrics [8], [9], [11], [12].
Most, current psychovisual quality metrics share the
commonality of being based on multichannel vision
models [18]. With these metrics a perceptual dis-
tortion map can be generated for every spatial lo-
cation.

Digital video coding distortions have been well
understood and classified [19], [20], such as block-
ing, ringing, blurring, etc. For many applications
of digital video, it is highly desirable that we are
able not only to give the overall distortion measure,
but also to describe the type of distortions as well
as the quality degradation caused by each type of
distortion, so that we can measure the system per-
formance and make improvements accordingly.

A number of researchers have already addressed
blocking impairment metrics, but mainly for still
images [21], [22], [23]. A blocking impairment met-
ric for video sequences is proposed in [24], which
only acts as a building block for a single-ended qual-
ity metric, rather than a stand-alone blocking im-
pairment metric, and is not based on vision models.
In general, current achievements in vision research
and quality metrics have not yet been reflected in
quantifying blocking artifacts for digital video. So
far, there has been little work done on ringing im-
pairment metrics for digital video.

2. FORMULATION OF VIDEO IMPAIR-
MENT METRICS BASED ON A VISION
MODEL

Modelling human vision has long been a challeng-
ing research task [25], [26]. In this section, our aim
is to devise a distortion detection model on which
digital video impairment metrics can be built. The
main challenge here is to find whether two images
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Fig. 1. Block diagram of the perceptual blocking distortion measure.

are similar or dissimilar. Therefore, most of our at-
tention is focused on the pattern sensitivity aspect
of human vision.

The impairment metrics investigated in this pa-
per are based on a model firstly introduced by Teo
and Heeger [5] and later extended by van den Bran-
den Lambrecht [8] and Winkler [9].

A number of simplifications have been introduced
to reduce the computation complexity of the imple-
mentation of the model, including a first-order IIR
temporal filter to model sustained channel, calcu-
lation of mean pixel value, subtraction of the mean
pixel value from each pixel, steerable pyramid de-
composition [27], CSF filtering and contrast gain
control.

The model described in this paper is designed for
monochrome video sequences and the parameteri-
sation was carried out using the VQEG subjective
test data.

Segmentation algorithms are used to identify
blocking and ringing dominant regions, respec-
tively, based on information obtained after spatio-
temporal decomposition. For instance, horizontal
or vertical edges can be identified as having a sim-
ilar waveform to that of the step response of a
highpass filter after the decomposition. Blocking
regions are segmented out by removing edges not
related to blocking such as edges in the original se-
quence, too short to be considered as block-edge,
etc. Strong ringing artifacts occur along the high-
contrast edges of objects, which will be reflected
as strong oscillations in the highpass channel of
the original sequence. The segmentation algorithm
generates ringing region map based on this obser-
vation.

The detection and pooling are carried out af-
ter contrast sensitivity function filtering and con-
trast gain control operations, only in the block-
ing/ringing artifact dominant regions.

3. PERCEPTUAL BLOCKING DISTOR-
TION METRIC

Blocking artifacts are defined as discontinuities
found across block boundaries [19]. A perceptual
blocking distortion metric (PBDM) is devised in
this section based on the above mentioned distor-

tion detection model to calculate perceptual distor-
tions, as shown in Fig. 1. The blocking distortion d
can be converted to the Objective Blocking Rating
(OBR) with the following empirical formula:

OBR =5—d*® (1)
where d is the summed distortion which is aver-
aged by the number of frames, and the OBR is on
a scale of 1 to 5. The exponent (0.6) is determined
experimentally.

Both subjective and objective tests have been
conducted and the correlations between the sub-
jective and objective data have been calculated to
evaluate the performance of the proposed block-
ing impairment metric compared with that of the
PSNR.

The test scenes were selected from two sources:
an ANSI T1A1 data set and the VQEG data set.
Bit rates were selected so that the generated se-
quences covered a full range of impairment. The
video encoder used is a software simulator of the
MPEG-2 Test Model 5 (TM5) [30]. The subjec-
tive tests followed the Double-Stimulus Impairment,
Scale Variant IT (DSIS-IT) method defined in the
ITU-R BT.500-9 [4].

A number of evaluation metrics were used to
measure the performance of the PBDM as an es-
timator of video blocking artifacts in a variety of
applications. The Spearman rank order correlation
coefficient is related to the prediction monotonic-
ity of the objective model, and the Pearson linear
correlation coefficient is related to the prediction
accuracy of the model [28].

Table I presents the evaluation results of the met-
rics. The 95% confidence bounds of the Pearson-
Logistic metric have also been calculated using the
method described in Ref. [31]. Fig. 2 shows the
scatter plot of the OBR versus the MOS with the
logistic fit. For comparison, the PSNR results are
also reported in the table and the figure. As shown
experimentally, a very good agreement between the
MOS and the OBR has been achieved. Although
the PSNR performs well in the VQEG test [17],
where the dominant distortion is blurring, it is un-



TABLE T
CORRELATION COEFFICIENTS.

Evaluation metric | Proposed blocking distortion metric PSNR
Correlation | Upper | Lower Correlation | Upper | Lower
bound | bound bound | bound
Spearman 0.937 0.508
Pearson-Logistic 0.961 0.982 0.918 0.489 0.726 0.149
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