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Abstract

Lossy compression algorithms used in digital video systems produce artifacts
whose visibility strongly depends on the actual image content. Simple error measures
such as RMSE or PSNR, albeit popular, ignore this important fact and are only
a mediocre predictor of perceived quality. Many applications require more reliable
assessment methods. This paper discusses issues in vision modeling for perceptual
video quality assessment (PVQA). Its purpose is not to describe a particular model
or system, but rather to summarize and to provide pointers to up-to-date knowledge
of important characteristics of the human visual system, to explain how these char-
acteristics may be incorporated in vision models for PVQA, to give a brief overview
of the state-of-the-art and current efforts in this field, and to outline directions for
future research.

Verlustbehaftete Kompressionsalgorithmen, wie sie in digitalen Video-Systemen
verwendet werden, erzeugen Artefakte, deren Sichtbarkeit stark vom Bildinhalt ab-
hängt. Einfache Fehlermetriken wie der mittlere quadratische Fehler oder der Signal-
Rausch-Abstand sind zwar weitverbreitet, doch sie ignorieren diese wichtige Tat-
sache und können folglich nur ein mittelmäßiger Indikator für die wahrgenommene
Qualität sein. Viele Anwendungen benötigen jedoch zuverlässigere Beurteilungsmeth-
oden. Dieser Artikel behandelt Aspekte der Modellierung des visuellen Systems für
wahrnehmungsbasierte Videoqualitätsbeurteilung (PVQA). Das Ziel ist weniger,
ein spezielles Modell oder System zu beschreiben, sondern vielmehr den gegen-
wärtigen Wissensstand über wichtige Charakteristiken des menschlichen visuellen
Systems zusammenzufassen, die Integration dieser Charakteristiken in Modelle zur
Videoqualitätsbeurteilung zu erläutern, einen Überblick über den Stand der Tech-
nik und über aktuelle Arbeiten zu geben, sowie mögliche Richtungen für zukünftige
Forschungsarbeit aufzuzeigen.

Les algorithmes de compression avec perte utilisés dans les sytèmes video numériques
produisent des artefacts dont la visibilité dépend fortement du contenu des im-
ages traitées. Les mesures d’erreurs les plus simples, telles que l’erreur quadratique
moyenne ou le rapport signal sur bruit, ignorent cette caractéristique et ne son-
t donc qu’un prédicteur médiocre de la qualité perçue. Beaucoup d’applications
nécessitent des techniques de mesure plus fiables. Cet article présente divers aspects
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de la modélisation du système visuel dans le cadre de l’évaluation de qualité des
séquences video (PVQA). L’objectif n’est pas de décrire un modèle particulier mais
plutôt d’exhiber et résumer l’état de nos connaissances des caractéristiques impor-
tantes du système visuel humain, d’expliquer comment celles-ci peuvent être incor-
porées dans les modèles de vision appliqués à l’évaluation de qualité des séquences
video, de donner un aperçu de l’état de la recherche dans ces domaines et enfin de
proposer de possibles directions d’investigation.

Key words: Human visual system; Vision models; Video quality assessment

1 Introduction

The advent of digital video systems has exposed the limitations of the tech-
niques traditionally used for video quality measurement. For conventional ana-
log video systems there are well-established performance standards. They rely
on particular test signals and measurement procedures to determine parame-
ters such as differential gain, differential phase or waveform distortion, which
can be related to perceived quality with relatively high accuracy [143]. While
these parameters are still useful today, their connection with perceived quality
has become much more tenuous; because of compression, digital video systems
exhibit artifacts fundamentally different from analog video systems — exam-
ples include blockiness, blurring, ringing, color bleeding, and motion com-
pensation mismatches [8, 140]. The amount and visibility of these distortions
strongly depends on the actual image content. Therefore, traditional signal
quality measurements are inadequate for the evaluation of these compression
artifacts.

Given these limitations, the designers of compression algorithms have had to
resort to subjective viewing tests in order to obtain reliable ratings for the
quality of compressed images or video [50]. While these tests – if executed
properly – are the closest we can get to the “truth” about perceived quality,
they are complex, time-consuming and consequently expensive. Hence, they
are often highly impractical or not feasible at all.

Looking for faster alternatives, researchers have turned to simple error mea-
sures such as root mean squared error (RMSE) or peak signal-to-noise ratio
(PSNR), suggesting that they would be equally valid. However, these simple
error measures operate solely on a pixel-by-pixel basis and neglect the impor-
tant influence of image content and viewing conditions on the actual visibility
of artifacts. Therefore, they cannot correlate well with perceived quality, and
many experiments confirm this low correlation — see for example [67, 81].

These problems necessitate methods of objective video quality assessment. As
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a matter of fact, there is a broad range of applications for objective video
quality assessment systems, including:

• Evaluation, test, and comparison of video codecs;
• Online quality monitoring and control;
• End-to-end testing of video transmission/communication systems;
• Perceptual video compression;
• Perceptual video restoration.

Coupled with appropriate video segmentation, the quality of specific features
(e.g. contours or textures) or specific compression artifacts (e.g. blockiness)
can be evaluated separately and eventually used to tune certain parts of the
encoder [111]. In a similar fashion, the quality of motion rendition can be
assessed [18].

In order to be able to replace subjective rating experiments, the ideal objective
quality assessment system should rate video impairments just like a human
being. Considering the variety of compression algorithms available and the
rapid change of technology in this field, a quality metric that is independent
of the particular algorithm is preferable in order to avoid early obsolescence.
Metrics based on models of the human visual system are one way to achieve
this technology independence, because they are the most general and poten-
tially the most accurate ones. However, the human visual system is extremely
complex, and many of its properties are not well understood even today. Ev-
idently, these uncertainties about the actual processing of visual information
in the human brain complicate the design of vision models and explain many
of the differences between existing PVQA systems.

While systems for the quality assessment of still images are already too nu-
merous to mention here (see e.g. [2] for a review), their extension to moving
pictures has not received much attention until recently. Lukas and Budrikis [68]
were the first to propose a comprehensive metric based on a spatio-temporal
model of the human visual system in 1982. Other models and metrics fol-
lowed now and then [37, 75, 117], but only in the past few years has there
been an increasing interest in PVQA, as the rising number of publications
shows [14, 46, 62, 67, 108, 110,112,118,122,127,132,138].

This paper is structured as follows: First, it discusses what quality constitutes
to the human observer and how it can be measured. Then, it describes the
human visual system, from the optics of the eye up to the neurons in the
primary visual cortex and higher-level cognition. In parallel, it outlines in
every section how each component or phenomenon may be incorporated in a
vision model for PVQA, and which restrictions apply. The paper concludes
with a section about the validation and evaluation of PVQA systems.
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2 Quality Factors

In order to be able to design a reliable PVQA system, it is necessary to under-
stand what “quality” means to the viewer. Viewers’ enjoyment when watching
a video depends on many factors. One of the most important is of course pro-
gram content and material. Provided the content itself is at least “watchable”,
video and sound quality play a prominent role. Research has shown that video
quality depends on viewing distance, display size, resolution, brightness, con-
trast, sharpness, colorfulness, naturalness and other factors [3, 56, 74, 93]. To
make things worse, there is a difference between fidelity (the accurate repro-
duction on the display) and perceived quality — for instance, subjects prefer
slightly more colorful images despite realizing that they look somewhat un-
natural [26, 139]. The accompanying sound has also been shown to influence
perceived video quality: subjective quality ratings are generally higher when
the test scenes are accompanied by a good quality sound program, which
apparently lowers the viewers’ ability to detect video impairments [90].

It is helpful for the following sections to relate the definitions of some of
these factors to vision modeling and the human visual system. For instance,
in the video community it is very popular to specify viewing distance in terms
of display size, i.e. in multiples of screen height. There are two reasons for
this: first, it was assumed for quite some time that the ratio of preferred
viewing distance to screen height is constant [69]. More recent experiments
with larger displays have shown, however, that this is not the case. While the
preferred viewing distance is indeed around 6 or 7 screen heights for smaller
displays, it approaches 3 to 4 screen heights with increasing display size [9,69].
Incidentally, typical home viewing distances are far from ideal in this respect
[7]. The second reason was the implicit assumption about a certain display
resolution (a certain number of scan lines), which is usually fixed for a given
television standard. In the context of vision modeling, the size and resolution
of the image projected onto the retina are more adequate specifications. The
size is measured in degrees of visual angle α, and the resolution or maximum
spatial frequency fmax is measured in cycles per degree of visual angle (cpd).
For a given screen height H , viewing distance D and number of scan lines L,
these two units are computed as follows:

α = 2 arctan(H/2D),

fmax = L/2α [cpd].

Table 1 gives examples for the size and resolution of the image that some
television systems and viewing setups produce on the retina. It is instructive
to compare these figures to the corresponding “specifications” of the human
visual system mentioned in later sections.
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3 Subjective Quality Assessment

Subjective quality ratings form the benchmark for objective metrics. However,
different applications require different testing procedures. Formal subjective
testing is defined in ITU-R (formerly CCIR) Recommendation 500 [50], which
suggests standard viewing conditions, criteria for observer and test scene se-
lection, assessment procedures, and analysis methods. I outline three of the
more commonly used procedures here:

• Double Stimulus Continuous Quality Scale (DSCQS): The presentation se-
quence for a DSCQS trial is illustrated in Figure 1. Viewers are shown
multiple sequence pairs consisting of a “reference” and a “test” sequence,
which are rather short (typically 10 seconds). The reference and test se-
quence are presented twice in alternating fashion, with the order of the two
chosen randomly for each trial. Subjects are not informed which is the ref-
erence and which is the test sequence. They rate each of the two separately
on a continuous quality scale ranging from “bad” to “excellent” as shown in
Figure 2. Analysis is based on the difference in rating for each pair, which
is often calculated from an equivalent numerical scale from 0 to 100.

• Double Stimulus Impairment Scale (DSIS): The presentation sequence for a
DSIS trial is illustrated in Figure 3. As opposed to the DSCQS method, the
reference is always shown before the test sequence, and neither is repeated.
Subjects rate the amount of impairment in the test sequence on a discrete
five-level scale ranging from “very annoying” to “imperceptible” as shown
in Figure 4.

• Single Stimulus Continuous Quality Evaluation (SSCQE) [77]: Instead of
seeing separate short sequence pairs, viewers watch a program of typically
20-30 minutes duration which has been processed by the system under test;
the reference is not shown. Using a slider, the subjects continuously rate
the instantaneously perceived quality on the DSCQS scale from “bad” to
“excellent” (Figure 2).

The above-mentioned methods generally have different applications. DSCQS
is the preferred method when the quality of test and reference sequence are
similar, because it is quite sensitive to small differences in quality. The DSIS
method is better suited for evaluating clearly visible impairments such as ar-
tifacts caused by transmission errors, for example. Both DSCQS and DSIS
method share a common drawback, however: changes in scene complexity or
statistical multiplexing in the transmission system can produce substantial
quality variations that are not evenly distributed over time; severe degrada-
tions may appear only once every few minutes. The standard DSCQS and
DSIS methods with their one-time rating are not suited to the evaluation of
such long sequences because of the recency phenomenon, a bias in the ratings
toward the final 10-20 seconds due to limitations of human working memo-
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ry [6]. Furthermore, it has been argued that the presentation of a reference
and the repetition of the sequences in the DSCQS method puts the subjects
in a situation too removed from the home viewing environment by allowing
them to become familiar with the material under investigation [63]. SSCQE
has been designed with these problems in mind, as it relates well to the time-
varying quality of today’s compressed digital video systems [78]. On the other
hand, program content tends to have a significant influence on SSCQE scores.
Also, SSCQE scores of different tests are harder to compare because of the
lack of a reference.

4 Optics of the Eye

The optics of the eye constitute the first processing stage that visual informa-
tion passes on its way through the human visual system. Attempts to make
general statements about the eye’s optical characteristics are complicated by
the fact that there are considerable variations of its properties between indi-
viduals. Furthermore, its components undergo continuous changes throughout
life. In general, however, the parameters of an individual healthy eye are cor-
related in such a way that the eye can produce a sharp image of a distant
object on the retina [16].

To determine the quality of the optics of the eye, the reflection of a visual
stimulus projected onto the retina can be measured [13]. The retinal image
turns out to be a distorted version of the input, the most noticeable distortion
being blurring. To quantify the amount of blurring, a point or a thin line is
used as the input image, and the resulting retinal image is called the point
spread function or line spread function of the eye; its Fourier transform is the
modulation transfer function. The amount of blurring depends on the pupil
size: for small pupil diameters up to 3-4 mm, the optical blurring is close to
the diffraction limit; as the pupil diameter increases (for lower ambient light
intensities), the width of the point spread function increases as well, because
the distortions due to cornea and lens imperfections become large compared to
diffraction effects [13,94]. The optical quality also deteriorates with increasing
distance from the optical axis and the fovea [61].

Westheimer [128] proposed a simple formula to approximate the foveal point
spread function of the human eye when in good focus with a pupil diameter
of 3 mm:

PSF(α) = 0.952 e−2.59|α|1.36

+ 0.048 e−2.43|α|1.74

,

α being in minutes of arc. This function is illustrated in Figure 5. For more
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elaborate expressions with parameters for pupil size [94], age and pigmentation
[49], the reader is referred to the literature.

The point spread function also changes with wavelength. By accommodation,
the eye can place any wavelength into good focus, but it is impossible to
focus all wavelengths simultaneously. This effect is called chromatic aberration.
It can be quantified by determining the modulation transfer function of the
human eye for different wavelengths. This is shown in Figure 6 for a human
eye model with a pupil diameter of 3 mm and in focus at 580 nm [73]. It is
evident that the retinal image contains only poor spatial detail at wavelengths
far from the in-focus wavelength (note the sharp cutoff going down to a few
cycles per degree at short wavelengths). This tendency toward monochromacy
becomes even more pronounced with increasing pupil diameter.

As far as modeling is concerned, some PVQA systems incorporate the point
spread function to blur the input prior to all other processing, but none of the
models I know take the effects of chromatic aberration into account explicitly.
It can be argued that the blurring can be considered at a later stage by appro-
priate modeling of contrast sensitivity (see also section 7), but this approach
ignores many fine details of the shape of the modulation transfer function and
its variation with wavelength (cf. Figure 6).

5 Photoreceptor Mosaic

Through the optics of the eye, the visual input is projected onto the retina,
the neural tissue at the back of the eye composed of the photoreceptor mo-
saic. The photoreceptors sample the image and convert the information into
signals that can be interpreted by the brain. There are two different types of
photoreceptors, rods and cones. Rods are responsible for vision at low light
levels, i.e. under scotopic conditions. In general, they can be neglected for the
applications considered in this paper, because TV displays operate at much
higher light levels.

Cones are responsible for vision at these higher light levels, i.e. under photopic
conditions. They are concentrated in the fovea, the region of highest visual
acuity, which covers approximately two degrees of visual angle on the retina.
As a matter of fact, there are three types of cones, L-cones, M-cones, and
S-cones, sensitive to long, medium and short wavelengths, respectively. They
form the basis of color perception (see section 6). Estimates of their spectral
sensitivities are shown in Figure 7 [104]. Note that these measurements were
made with a light source at the cornea, and are thus influenced by the optical
system of the eye as described above.
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The density of photoreceptors varies greatly across the retina [1]. L- and M-
cones dominate overall; in the central fovea, they form a tightly packed mosaic
reaching a density of up to 300, 000/mm2 [19]. At a size of approximately 0.5
minutes of visual angle, the maximum frequency of around 60 cpd attained
here is high enough to capture all of the spatial variation after the blurring
by the eye’s optics. S-cones are much more sparse and account for less than
10% of the total number of cones. They are spaced approximately 10 minutes
apart on average, resulting in a maximum frequency of only 3 cpd [20]. This
is probably rooted in the strong defocus of short-wavelength light by the eye’s
optics (see Figure 6).

In fact, many PVQA systems neglect eccentricity and off-axis effects and con-
centrate their modeling efforts on the fovea. This is often justified with the
fact that the eyes are directed in such a way that the current region of at-
tention is brought into focus there. It also significantly simplifies modeling,
because the optical and retinal properties are relatively uniform across the
fovea. However, it must not be forgotten that its diameter of two degrees is
rather small compared to the size of a TV display projection on the retina (cf.
Table 1).

6 Color Perception

As is evident from Figure 7, there is a significant overlap between L- and M-
cone sensitivities. In order to improve the efficiency of the visual encoding, the
L-, M-, and S-cone absorption rates are decorrelated very early in the visual
system by forming new signals.

Hering [44] was the first to point out that some pairs of hues can coexist in a
single color sensation (e.g. a reddish yellow is perceived as orange), while oth-
ers cannot (we never perceive a reddish green, for instance). This led him to
the conclusion that the sensations of red and green as well as blue and yellow
are encoded in separate visual pathways, which is commonly referred to as the
theory of opponent colors. Both psychological and physiological experiments in
the 1950s yielded further evidence to support this theory [48,52]. The principal
components of opponent-colors space are black-white (B-W), red-green (R-G)
and blue-yellow (B-Y). The precise color directions of these components are
still subject to debate, however. As an example, the spectral sensitivities of
the opponent colors space derived by Poirson and Wandell [85, 86] are shown
in Figure 8. As can be seen, the B-W channel, which encodes luminance in-
formation, is determined mainly by medium to long wavelengths. The R-G
channel discriminates between medium and long wavelengths, while the B-Y
channel discriminates between short and medium wavelengths. Because most
of the psychophysical experiments for chromatic contrast sensitivity and chro-

8



matic masking (see sections 7 and 9) are based on opponent-colors stimuli,
vision models working in opponent-colors space have the advantage of their
channels being adapted to these stimuli, which facilitates model design and
analysis [110, 120].

Alternatively, models employing CIE L∗u∗v∗ [67] or a modified CIE L∗a∗b∗

[141, 142] color space instead of or in combination with an opponent-colors
space have been proposed for PVQA systems. The roots of CIE L∗u∗v∗ can be
traced back to color television studies, while CIE L∗a∗b∗ comes from the textile
industry [47]. Both CIE L∗u∗v∗ and CIE L∗a∗b∗ color spaces (see Appendix A
for transformation formulas) were defined with a perceptually uniform measure
for color differences in mind: the Euclidean distance between color coordinates
in these spaces provides an approximation to the perceived difference [134].
This can be advantageous for PVQA systems because they try to determine
the amount of this perceived difference between reference and test sequences.

It is interesting to note that in a comparison between a luminance-only PVQA
system and its full-color extension, the results differed only slightly [111]. This
is to be expected since many encoders distribute the distortions more or less
equally between chromatic and achromatic channels. Future tests will have to
show how the significant increase in complexity and computational load for
color PVQA systems can be balanced against quality rating accuracy.

6.1 Component Video

The color spaces used in many standards for coding visual information, in-
cluding PAL, NTSC, JPEG, MPEG and others, already take into account
certain properties of the human visual system; the above-mentioned theory of
opponent colors and the fact that acuity for color information is lower than for
luminance prompted the use of color difference components instead of color
primaries for coding. Furthermore, the human visual system has a nonlinear,
roughly logarithmic response to intensity. Therefore, a compressive nonlinear-
ity is applied before coding [87].

It so happens that conventional television cathode ray tube (CRT) displays
also have a nonlinear relationship between signal voltage or frame buffer values
x and displayed intensity I [10]. This relationship can be slightly different for
each of the three color primaries, but it can be approximated quite well by a
function such as

I(x) = (αx + β)γ. (1)

The exponent γ usually varies between 2.2 and 2.5; α and β can be adjusted
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with the picture/contrast and black level/brightness controls. Applying the
inverse of this function to intensity values is referred to as gamma correc-
tion. Coincidentally, the lightness sensitivity of human vision is very nearly
the inverse of Equation (1) [87]. Therefore, coding visual information in the
gamma-corrected domain is not only more meaningful perceptually, but also
automatically compensates for CRT nonlinearities.

ITU-R Recommendation 601 [51] is the international standard for studio-
quality component digital video. It defines a Y ′C ′

BC
′
R color space, where Y ′ en-

codes luminance, C ′
B the difference between blue primary and luminance, and

C ′
R the difference between red primary and luminance (the prime is used here

to emphasize the nonlinear nature of these quantities). Because the Y ′C ′
BC

′
R

space assumes a particular display device, or to be more exact, a particular
spectral power distribution of the light emitted from the display, CIE XYZ
tristimulus values serve as a reference for conversions from Y ′C ′

BC
′
R to the

color spaces discussed above. Conversion from Y ′C ′
BC

′
R to CIE XYZ requires

two linear transformations and gamma-correction as illustrated in Figure 9;
the corresponding formulas are given in the Appendix B.

7 Contrast Sensitivity

Contrast is a measure of the relative variation of luminance. Unfortunately,
a common definition of contrast suitable for all stimuli does not exist. In the
case of a periodic pattern of symmetrical deviations ranging from Lmin to Lmax,
Michelson contrast [76] is generally used:

CM =
Lmax − Lmin

Lmax + Lmin
.

When the pattern consists of a single increment or decrement ∆L to an oth-
erwise uniform background luminance L, Weber contrast is often used [80]:

CW =
∆L

L
.

These two definitions are by no means equivalent and do not even share a
common range of values: Michelson contrast can range from 0 to 1, whereas
Weber contrast can range from −1 to ∞. To make things worse, neither of
the two is appropriate for measuring contrast in complex images, because a
few very bright or very dark points would determine the contrast of the whole
image. Furthermore, human contrast sensitivity varies with the adaptation
level associated with the local average luminance. In order to address these

10



issues, Peli [82] proposed a local band-limited contrast measure

Ci(x, y) =
BPi(x, y)

LPi(x, y)
,

where BPi(x, y) is the band-pass image of band i, and LPi(x, y) contains
the energy below band i. Modifications of this local band-limited contrast
definition have been used successfully in vision models for PVQA [21,66] and
are in good agreement with psychophysical contrast-masking experiments with
Gabor patches [83]. Nevertheless, more experiments are necessary before one
can conclude that the definite measure for contrast in complex images has
been found [133].

Sensitivity to contrast depends on the color as well as the spatial and temporal
frequency of the stimuli. Contrast sensitivity functions (CSFs) are generally
used to quantify these dependencies. Contrast sensitivity is defined as the
inverse of the contrast threshold, i.e. the minimum contrast necessary for an
observer to detect the target.

Spatio-temporal CSF approximations are shown in Figure 10. Achromatic con-
trast sensitivity is generally higher than chromatic, especially for high spatio-
temporal frequencies. The full range of colors is perceived only at low frequen-
cies. As spatio-temporal frequencies increase, blue-yellow sensitivity declines
first. At even higher frequencies, red-green sensitivity diminishes as well, and
perception becomes achromatic. On the other hand, albeit to a lesser extent,
achromatic sensitivity decreases at low spatio-temporal frequencies, whereas
chromatic sensitivity does not. However, this apparent attenuation of sen-
sitivity towards low frequencies may be attributed to implicit masking, i.e.
masking by the spectrum of the window within which the test gratings are
presented [137].

There has been some debate about the space-time separability of the spatio-
temporal CSF. This property is of interest in vision modeling because a CSF
that could be expressed as a product of spatial and temporal components
would simplify modeling. Early studies concluded that the spatio-temporal
CSF was not space-time separable at lower frequencies [59, 91]. Kelly [53]
measured contrast sensitivity under stabilized conditions (i.e. the stimuli were
stabilized on the retina by compensating for the observers’ eye movements).
He fit an analytic function to his measurements [54], which is technically the
CSF for traveling waves. Through variable substitution, it can be rewritten in
terms of spatial frequency fs and temporal frequency ft of the test stimuli to
yield a very close approximation of the spatio-temporal CSF for counterphase
flicker:

CSF(fs, ft) = 4π2fsft e−4π(ft+2fs)/45.9 ·
(
6.1 + 7.3 |log(ft/3fs)|3

)
. (2)
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Burbeck and Kelly [12,55] found that this CSF and also its chromatic counter-
parts can be approximated by linear combinations of two space-time separable
components termed excitatory and inhibitory CSFs. The resulting approxima-
tions of the CSFs of the B-W and R-G channels are shown in Figure 10. The
CSF of the B-Y channel is very similar in shape to the CSF of the R-G channel;
the B-Y sensitivity is somewhat lower overall, and its high-frequency decline
sets in earlier.

Yang and Makous [136] measured the spatio-temporal CSF for both in-phase
and conventional counterphase modulation. Their results suggest that the un-
derlying filters are indeed spatio-temporally separable and have the shape of
low-pass exponentials. The spatio-temporal interactions observed for counter-
phase modulation may be explained as a product of masking by the zero-
frequency component of the gratings.

Recently, Daly [22] addressed the important issue of unconstrained eye move-
ments for CSF models in PVQA systems. In particular, he showed how to
include natural drift, smooth pursuit and saccadic eye movements in Kelly’s
formulation of the stabilized spatio-temporal CSF given by Equation (2) us-
ing a model for eye velocity. The effect on the shape of the CSF is substantial
and can best be described as a stretch along the temporal frequency axis.
Westen et al. [127] incorporated eye movements into their model by a similar
motion compensation of the CSF. They proposed a method for the estimation
of smooth-pursuit eye movements under the worst-case assumption that the
observer is capable of tracking all the objects in the scene.

Existing PVQA systems are based on a variety of different contrast sensitivity
measurements, mostly from the early studies. Basically, there are two possibil-
ities for how to incorporate contrast sensitivity into a vision model: The first
is to set the gain of each filter in the bank of a multi-channel implementation
(see next section) such that the ensemble approximates the empirical CSF.
The second is to pre-filter the B-W, R-G and B-Y channels with the respec-
tive contrast sensitivity functions and to calibrate the following stages of the
model in such a way that no further variations in contrast sensitivity are in-
troduced. Both approaches have been used in the PVQA systems proposed so
far. While the first method is more efficient in the implementation, the second
facilitates a more accurate approximation of the shape of the CSF.

8 Multi-Resolution Architecture

Early vision models [68,72,95] were based on single-resolution theory and pro-
vided a first insight into simple visual phenomena. However, they are unable
to cope with more complex patterns and were soon challenged by empirical
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data from masking and pattern adaptation experiments. These data can be
explained quite successfully by a multi-resolution theory of vision, which em-
ploys a whole set of different filters instead of just one.

8.1 Spatial Mechanisms

A large number of neurons in the primary visual cortex, the so-called simple
cells, have receptive fields composed of several parallel elongated excitatory
and inhibitory regions as illustrated in Figure 11 [23, 116]. Hence, they can
be characterized by a particular radial spatial frequency, defined by the dis-
tance between adjacent maxima or minima of the response function, and by
an orientation, corresponding to the angle perpendicular to the “bars”. Serv-
ing as an oriented band-pass filter, the neuron will respond to a certain range
of spatial frequencies and orientations about its center values. There is still a
lot of discussion about the exact tuning shape and bandwidth, and different
experiments have led to different results. For the achromatic visual pathways,
most of the studies give estimates of approximately 1 to 2 octaves for the
spatial frequency bandwidth and 20 to 60 degrees for the orientation band-
width, varying with spatial frequency [27, 28, 84]. These results are confirmed
by psychophysical evidence from studies of discrimination and interaction phe-
nomena [80]. Interestingly, these cell properties can also be related with and
even derived from the statistics of natural images [32, 113].

Fewer empirical data is available for the chromatic pathways. They probably
have similar spatial frequency bandwidths [64,65,125], whereas their orienta-
tion bandwidths have recently been found to be significantly larger, ranging
from 60 to 130 degrees [114].

Given these bandwidths, and considering the decrease in contrast sensitivity at
high spatial frequencies (see previous section), the spatial frequency plane for
the achromatic channel can be covered by 4-6 spatial frequency-selective and
4-8 orientation-selective mechanisms. Further reducing orientation selectivity
can affect modeling accuracy, as was reported in a comparison of two models
with 3 and 6 orientation-selective mechanisms, respectively [109].

Taking into account the larger orientation bandwidths of the chromatic chan-
nels, 2-3 orientation-selective mechanisms may suffice there. Chromatic sensi-
tivity remains high down to very low spatial frequencies, which necessitates a
low-pass mechanism and possibly additional spatial frequency-selective mech-
anisms at this end. For reasons of implementation simplicity, it may be advan-
tageous to use the same decomposition for chromatic and achromatic channels
nonetheless. An example of a partitioning of the spatial frequency plane used
in a PVQA system by the author [131, 132] is shown in Figure 12.
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8.2 Temporal Mechanisms

Temporal mechanisms have been studied as well, but there is less agreement
about their characteristics than for spatial mechanisms. While some studies
concluded that there are a large number of narrowly tuned mechanisms [60], it
is now believed that there is just one low-pass and one band-pass mechanism
[36,45,115], which are generally referred to as sustained and transient channel,
respectively. An actual third mechanism was proposed [45, 71], but has been
called in question by later studies [36, 40]. Physiological experiments confirm
these findings to the extent that low-pass and band-pass mechanisms have
been discovered [34], but neurons with band-pass properties exhibit a wide
range of peak frequencies. Recent results also indicate that the peak frequency
and bandwidth of the mechanisms change considerably with stimulus energy
[35].

In a recent study, Fredericksen and Hess [35,36] model temporal mechanisms
with derivatives of the impulse response function

h(t) = e−( ln(t/τ)
σ )

2

.

They achieve a very good fit to their data using only this function and its
second derivative, corresponding to one sustained and one transient mecha-
nism, respectively. For a typical choice of parameters τ = 0.16 and σ = 0.2,
the resulting frequency responses of their filters are shown in Figure 13.

8.3 Filter Design

The above findings can be incorporated into a PVQA system via a filter bank.
The fundamental requirements for its design include joint localization in s-
pace, spatial frequency and orientation in order to model the frequency- and
orientation-selectivity of channels in the human visual system. For implemen-
tation efficiency, a pyramid structure with self-similar filters and dyadic sub-
sampling is favorable. Invertibility is an advantage in applications where per-
fect reconstruction from the channels is required; a filter set summing to 1 is
also desirable because it allows the CSF to be modeled independently of the
decomposition filters.

As noted earlier, certain receptive fields in the human visual system are tuned
in spatial frequency and orientation; in fact, their profile (cf. Figure 11) resem-
bles two-dimensional Gabor functions [23, 116]. Consequently, it was posited
that cortical filters act to minimize simultaneously the joint product of s-
tandard deviation of spatial and spatial-frequency sensitivities in accordance
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with the uncertainty principle from Fourier analysis [24]. Therefore, the Gabor
transform may be considered an obvious implementation choice. However, this
argument is based on a particular definition of uncertainty involving second-
order moments, which may not be appropriate for the visual system [105]. Fur-
thermore, only complex-valued Gabor functions have this property [57, 135].
From a practical point of view, the Gabor transform is also difficult to re-
construct, hence other approaches have been investigated and have gained
popularity.

Pyramid structures have been proposed for many image processing applica-
tions. They seek to reduce the number of pixels by repeated low-pass filter-
ing and subsampling, which reduces the amount of computation. The cortex
transform introduced by Watson [116] and later modified and used for quality
assessment by Daly [21] is an example. It is appealing because of its flexibility:
radial frequency selectivity and orientation selectivity are modeled separately,
frequency and orientation bandwidth can be adjusted within a broad range,
and the transform is easily invertible. Simoncelli et al. [99, 100] proposed the
steerable pyramid, which is attractive because of its “shiftability” property: it
is translation- and rotation-invariant, self-inverting, essentially aliasing-free,
and can be designed for any number of orientation bands.

The disadvantage of all these decompositions is that they are overcomplete.
This is generally less of a concern for PVQA, but it is naturally undesirable
for perceptual coding applications. Discrete wavelet transforms have proven
highly efficient for coding applications because of their orthogonal basis func-
tions. In contrast to the decompositions mentioned above, they are critically
sampled, i.e. the number of transform coefficients is equal to the number of
samples in the input signal. However, the amount of aliasing they introduce in
the subbands as well as their behavior for translated or dilated input signals
make them less useful for vision modeling [100]. The quadrature mirror filter
(QMF) transform on a hexagonal grid [98] was used for perceptual distortion
measurement by Teo and Heeger [109]. However, the orientation bandwidth
of these filters turned out to be too broad (nearly 60 degrees), which affected
the fit of the model to psychophysical data.

The design of the temporal filter bank is governed by different criteria. In
certain applications of PVQA systems such as monitoring and control, a low
delay is important. This fact together with limitations of memory and com-
puting power favor time-domain implementations of the temporal filters over
frequency-domain decompositions. A trade-off has to be found between an ac-
ceptable delay and the accuracy with which the temporal mechanisms ought to
be approximated. Recursive infinite impulse response (IIR) filters fare better in
this respect than (nonrecursive) finite impulse response (FIR) filters; IIR filters
can achieve a close approximation with delays of only a few frames [62, 132],
while FIR filters may introduce delays of a few dozen frames. However, the
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latter are easier to design and generally have better phase characteristics.

8.4 Spatio-Temporal Considerations

How can the interactions between spatial and temporal channels indicated
by contrast sensitivity measurements be incorporated into the channels of a
multi-resolution architecture? There are two hypotheses on this matter: The
sensitivity-scaling hypothesis states that the temporal filters have a peak sen-
sitivity that is independent of spatial frequency, only the filter gain changes;
therefore, a filter bank that is separable in space and time can be used [129].
The covariation hypothesis states that the ensemble of filters exhibits a spatio-
temporal covariation; in this case the filter bank cannot be separable.

The influence of these hypotheses on the performance of vision models has
not yet been investigated. It is evident that the sensitivity-scaling paradigm
permits an easier implementation. The sequence can be filtered first in the
temporal domain, and afterwards the different temporal channels undergo
separate spatial decompositions. PVQA system designers often choose this
approach for reasons of simplicity [111].

The covariation paradigm offers a potentially more accurate modeling of vision
mechanisms, but requires a more elaborate spatio-temporal decomposition, as
indicated in [117]. For this approach, the above-mentioned filter structures
could be extended to the time dimension.

9 Masking

Masking is a very important phenomenon in vision in general and in PVQA in
particular as it describes interactions between stimuli. Masking occurs when
a stimulus that is visible by itself cannot be detected due to the presence of
another. Sometimes the opposite effect, facilitation, occurs: a stimulus that is
not visible by itself can be detected due to the presence of another. Within the
framework of quality assessment it is helpful to think of the distortion or coding
noise being masked (or facilitated) by the original image or sequence acting
as background. Masking explains why similar coding artifacts are disturbing
in certain regions of an image while they are hardly noticeable elsewhere.
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9.1 Spatial Masking

Many vision models are limited to intra-channel masking, assuming that mask-
ing occurs only between stimuli located in the same channel. However, more
recent psychophysical experiments suggest that masking also occurs between
channels of different orientation [33], between channels of different spatial fre-
quency, and between chrominance and luminance channels [17, 64, 106].

Models have been proposed which explain a wide variety of empirical contrast
masking data within a process of contrast gain control. These models were
inspired by analyses of the responses of single neurons in the visual cortex of
the cat [5, 42, 43], where contrast gain control serves as a mechanism to keep
neural responses within the permissible dynamic range while at the same time
retaining global pattern information.

Contrast gain control can be modeled by an excitatory nonlinearity that is
inhibited divisively by a pool of responses from other neurons. Masking oc-
curs through the inhibitory effect of the normalizing pool [33, 109]. Watson
and Solomon [119] recently presented an elegant generalization of these mod-
els, which permits an easy integration of many kinds of channel interactions
and spatial pooling: Let a = a(t, c, f, θ, x, y) be a coefficient of the perceptu-
al decomposition in temporal channel t, color channel c, frequency band f ,
orientation band θ, at location x, y. Then the corresponding sensor output
s = s(t, c, f, θ, x, y) can be computed as

s = k
ap

σ2 + aq ∗ h
. (3)

The excitatory path in the numerator consists of a simple power-law nonlin-
earity with exponent p. The inhibitory path in the denominator controls the
gain of the excitatory path. It also includes a nonlinearity with a possibly
different exponent q. Additionally, filter responses are pooled over different
channels in the inhibitory path by virtue of a convolution with the pooling
function h = h(t, c, f, θ, x, y), for example a Gaussian kernel [119]. In its most
general form, this pooling operation may combine coefficients from the dimen-
sions of time, color, frequency, orientation, space, and phase. The saturation
constant σ is added to prevent division by zero; k is used to adjust the overall
gain of the mechanism. Introduced for luminance images, this contrast gain
control model has been used successfully with color images and video by the
author [131, 132].

In Teo and Heeger’s implementation [109], which is based on a direct model of
neural cell responses [43], pooling is limited to orientation, and the exponents
of both the excitatory and inhibitory nonlinearity are fixed at p = q = 2 so as
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to be able to work with local energy measures. However, this procedure rapidly
saturates the sensor outputs, which is why they have to use multiple contrast
bands (i.e. several different ks and σs) for all coefficients in order to cover the
full range of contrasts. Watson and Solomon [119] showed that the same effect
can be achieved with a single contrast band when p > q. This reduces the
number of model parameters considerably and simplifies the fitting process.

Although implemented one way or another in most PVQA systems, contrast
masking is not the only conceivable masking mechanism and cannot explain
all masking data. The models described above are based on experiments with
simple stimuli such as sinusoidal gratings and Gabor patches. With complex
stimuli as are found in real scenes, the distortions can be more noise-like, and
masking can become much larger [11,30]. Entropy masking has been proposed
as a bridge between contrast masking and noise masking, when the distortion
is deterministic but unfamiliar [121], which may be a good model for quality
assessment by inexperienced viewers. A discussion and comparison of several
different models for spatial masking can be found in [58].

9.2 Temporal Masking

Temporal masking is an elevation of visibility thresholds due to temporal
discontinuities in intensity, for example scene cuts. Within the framework of
television, it was first studied by Seyler and Budrikis [96, 97], who concluded
that the threshold elevation may last up to a few hundred milliseconds after
a transition from dark to bright or from bright to dark. More recently, Tam
et al. [107] investigated the visibility of MPEG-2 coding artifacts after a scene
cut and found significant visual masking effects only in the first subsequent
frame. Carney et al. [15] noticed a strong dependence on stimulus polarity,
with the masking effect being much more pronounced when target and masker
match in polarity. They also found masking to be greatest for local spatial
configurations.

Interestingly, temporal masking can occur not only after a discontinuity (“for-
ward masking”), but also before. This “backward masking” may be explained
as the result of the variation in the latency of the neural signals in the visual
system as a function of their intensity [4]. The opposite of temporal masking,
temporal facilitation, can occur at low-contrast discontinuities [38].

So far, the above-mentioned temporal effects have received much less attention
in the video coding community than their spatial counterparts. In principle,
temporal masking can be taken into account with a contrast gain control model
as in Equation (3) by adding a time dependency to the pooling function h, as
demonstrated by Girod [38]. Watson [118] recently outlined a PVQA system
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that models forward masking effects by means of a masking sequence produced
by passing the reference through a low-pass filter.

10 Pattern Adaptation

Pattern adaptation adjusts the contrast sensitivity of the visual system in re-
sponse to the prevalent stimulation patterns. For example, adaptation to pat-
terns of a certain frequency can lead to a noticeable decrease of contrast sensi-
tivity around this frequency [39,101,130]. Together with masking, adaptation
was one of the major incentives for developing a multi-resolution theory of vi-
sion. However, pattern adaptation has a distinct temporal component to it and
is not automatically taken into account by a multi-resolution representation of
the input; rather, it needs to be incorporated explicitly by adapting the per-
tinent model parameters. Ross and Speed [92] presented a single-mechanism
model that accounts for both pattern adaptation and masking effects of simple
stimuli, but PVQA systems have largely ignored this phenomenon.

An interesting study in this respect was carried out by Webster and Miyahara
[123]. They used natural images of outdoor scenes (both distant views and
close-ups) as adapting stimuli. It was found that exposure to this kind of
stimuli induces pronounced changes in contrast sensitivity. The effects can
be characterized by selective losses in sensitivity at lower to medium spatial
frequencies. This is consistent with the characteristic amplitude spectra of
natural images, which decrease with frequency roughly as 1/f . This is a typical
situation when viewing video, and the CSF of the vision model may need to
be adjusted so as to take this phenomenon into account.

Likewise, Webster and Mollon [124] examined how color sensitivity and ap-
pearance might be influenced by adaptation to the color distributions of im-
ages. They found that natural scenes exhibit a limited range of chromatic
distributions, so that the range of adaptation states is normally limited as
well. However, the variability is large enough so that different adaptation ef-
fects may occur for individual scenes and for different viewing conditions.

11 Pooling

The processes described so far take place before or in the primary visual cor-
tex, also referred to as area V1. It is believed that the information represented
there in various channels is integrated in the subsequent brain areas, beginning
with area V2. This process can be simulated by gathering the data from these
channels according to rules of probability or vector summation, also known
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as pooling. However, little is known about the nature of the actual integra-
tion in the brain. As a matter of fact, there is no firm experimental evidence
that the mathematical assumptions and equations presented below are a good
description of mechanism pooling in the human visual system [36,89].

If there are a number of independent “reasons” i for an observer noticing the
presence of a distortion, each having probability Pi respectively, the overall
probability P of the observer noticing the presence of the distortion is

P = 1 − ∏
i

(1 − Pi). (4)

This is the probability summation rule. The dependence of Pi on the distortion
strength xi can be described by the psychometric function

Pi = 1 − e−x
βi
i . (5)

This is one version of a distribution function studied by Weibull [126] and first
applied to vision by Quick [89]. β determines the slope of the function. Under
the homogeneity assumption that all βi are equal [79], Eqs. (4) and (5) can
be combined to yield

P = 1 − e−
∑

xβ
i .

The exponent in the above equation is in itself an indicator of the visibility
of distortions. Therefore, models may postulate a combination of mechanism
responses before producing an estimate of detection probability. Vector sum-
mation (also called Minkowski summation) achieves this:

x = β

√∑
xβ

i .

Different exponents β have been found to yield good results for different ex-
periments and implementations. β = 2 was used e.g. in [109, 131]; this case
corresponds to the ideal observer formalism under independent Gaussian noise,
which assumes that the observer has complete knowledge of the stimuli and
uses a matched filter for detection. In a study of subjective experiments with
coding artifacts, β ≈ 2 was found to give good results [25]. Intuitively, a few
high distortions may draw the viewer’s attention more than many lower ones.
This behavior can be emphasized with higher exponents, which have been used
in several other vision models, for example β = 4 [110,112]. The best fit of a
contrast gain control model to masking data was achieved with β ≈ 5 [119].

In any case, the pooling operation need not be carried out over all pixels in
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the entire sequence or frame. In order to take into account the focus of at-
tention of observers, for example, pooling can be carried out separately for
spatio-temporal blocks of the sequence that cover roughly 100 milliseconds
and two degrees of visual angle each [112]. Alternatively, the distortion can
be computed locally for every pixel, yielding a perceptual distortion map for
better visualization of the temporal and spatial distribution of distortions.
For demonstration, I encoded the Basketball scene with the MPEG-2 encoder
of the MPEG Software Simulation Group at 3 Mbit/s. Figure 14 shows a
sample frame from the sequence and the corresponding distortion map pro-
duced by the author’s PVQA system [132], which includes temporal aspects
of the distortions as well. Such a distortion map can help the expert to locate
and identify problems in the processing chain or shortcomings of an encoder,
for example. This can be more useful than a global measure in many PVQA
applications.

12 Cognitive Processes

While the previous sections were concerned mostly with lower-level near-
threshold aspects of vision, the cognitive behavior of humans when watching
a video cannot be ignored in advanced PVQA systems. However, cognitive
behavior may differ greatly between individuals and situations, which makes
it very difficult to generalize. Nevertheless, I want to point out two important
components, the shift of the focus of attention and the tracking of moving
objects, which are not unrelated.

When viewing a video, we focus our gaze on particular areas. Studies have
shown that the direction of gaze during viewing is not completely idiosyncrat-
ic to individual viewers. Instead, a significant number of viewers will focus
on the same regions of a scene [31, 102, 103]. Naturally, this focus of atten-
tion is highly scene-dependent. Maeder et al. [70] proposed constructing an
importance map for the sequence as a prediction for the focus of attention,
taking into account perceptual factors such as edge strength, texture energy,
contrast, color variation, homogeneity, etc.

In a similar manner, viewers may also track specific moving objects in a scene.
In fact, motion tends to attract the viewers’ attention. Now, the spatial acuity
of the human visual system depends on the velocity of the image on the retina:
as the retinal image velocity increases, spatial acuity decreases. The visual
system addresses this problem by tracking moving objects with smooth-pursuit
eye movements, which minimizes retinal image velocity and keeps the object
of interest on the fovea. Smooth pursuit works well even for high velocities,
but it is impeded by large accelerations and unpredictable motion [29,41]. On
the other hand, tracking a particular movement will reduce the spatial acuity
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for the background and objects moving in different directions or at different
velocities. An appropriate adjustment of the spatio-temporal CSF as described
in section 7 to account for some of these sensitivity changes can be considered
as a first step in modeling such phenomena [22, 127].

13 Evaluation of PVQA Systems

Some authors have demonstrated the performance of their video quality met-
rics by computing the correlation of their system’s ratings with subjective
ratings of a set of sequences. However, subjectively rated sequences are hard-
ly available in the public domain; the sequences and subjective ratings used
in these demonstrations have been mostly proprietary, making it difficult to
compare metrics with each other.

In 1997, the Video Quality Experts Group (VQEG) was formed with the ob-
jective to collect reliable subjective ratings for a well-defined set of sequences
and to evaluate the performance of different video quality assessment systems
with respect to these sequences. The goal of this effort is to recommend the
video quality assessment system(s) whose quality predictions are in best a-
greement with subjective ratings. The emphasis of the first phase of VQEG
is on distribution-class video, i.e. mainly MPEG-2 encoded sequences with
different profiles, levels and other parameter variations, the bit rates ranging
from 768 kbit/s to 50 Mbit/s. In total, 16 conditions and 20 scenes of 8 seconds
each were selected and encoded (the scenes were disclosed to the proponents
only after the submission deadline). Ten different PVQA systems were sub-
mitted, and their output for each of the 16×20 sequences will be recorded.
In parallel, DSCQS subjective ratings for all sequences will be obtained by
several testing labs. The metrics’ predictions will then be compared to the
subjective ratings by means of statistical data analysis methods; performance
criteria include prediction accuracy and consistency. The participating ITU
study groups, ITU-T SG 9, ITU-T SG 12, and ITU-R SG 11, will base their
recommendations on the results of this evaluation. An important measure of
acceptability will be a comparison of metric prediction errors to rating differ-
ences between groups of subjective viewers. As this paper is being published,
first results of this effort should become available. 1

1 Consult the official VQEG web site http://www.crc.ca/vqeg for more information
and the current status of this effort.
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14 Conclusions

I have discussed some of the issues in applying vision models to perceptual
video quality assessment. Several models have already been proposed and
implemented, and the results are quite promising. Nevertheless, some issues
regarding the inner workings of the human visual system itself have not yet
been resolved satisfactorily and are still under investigation; for others it is
not clear how to best incorporate them into a vision model. We are still a
long way from having developed or even designed the “perfect” PVQA system
that could replace subjective tests. Research in this area is vivid, however, and
with the VQEG effort as the first major undertaking to compare and analyze
the performance of objective video quality metrics, we are taking another
important step in this direction.

Appendix A

Conversion from CIE 1931 XYZ tristimulus values to CIE L∗a∗b∗ and CIE L∗u∗v∗

color spaces is defined as follows [134]. The conversions make use of the func-
tion

f(x) =




x1/3 if x > 0.008856

7.787x + 16/116 otherwise.

Both CIE L∗a∗b∗ and CIE L∗u∗v∗ space share a common lightness component
L∗:

L∗ = 116f(Y/Y0) − 16.

The 0-subscript refers to the corresponding unit for the reference white being
used. The two chromaticity coordinates u∗ and v∗ in CIE L∗u∗v∗ space are
computed as follows:

u∗ = 13L∗(u′ − u′
0), u′ =

4X

X + 15Y + 3Z
,

v∗ = 13L∗(v′ − v′0), v′ =
9Y

X + 15Y + 3Z
,

and the CIE L∗u∗v∗ color difference is given by

∆E∗
uv =

√
(∆L∗)2 + (∆u∗)2 + (∆v∗)2.
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The two chromaticity coordinates a∗ and b∗ in CIE L∗a∗b∗ space are computed
as follows:

a∗ = 500 [f(X/X0) − f(Y/Y0)] ,

b∗ = 200 [f(Y/Y0) − f(Z/Z0)] ,

and the CIE L∗a∗b∗ color difference is given by

∆E∗
ab =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2.

By definition, L∗ = 100, u∗ = v∗ = 0, and a∗ = b∗ = 0 for the reference white.

Appendix B

Y ′C ′
BC

′
R color space is defined in ITU-R Recommendation 601 [51]. Conversion

from Y ′C ′
BC

′
R to standard CIE 1931 XYZ tristimulus values requires three

steps as illustrated in Figure 9. Y ′C ′
BC

′
R coding uses 8 bits for each component:

Y ′ is coded with an offset of 16 and an amplitude range of 219, while C ′
B

and C ′
R are coded with an offset of 128 and an amplitude range of ±112.

The extremes of the coding range are reserved for synchronization and signal
processing headroom, which requires clipping prior to conversion. Nonlinear
R′G′B′ values in the range [0, 1] are then computed from Y ′C ′

BC
′
R as follows:




R′

G′

B′




=
1

219




1 0 1.3707

1 −0.3365 −0.6982

1 1.7324 0



·







Y ′

C ′
B

C ′
R



−




16

128

128






.

Gamma correction as in Equation (1) has to be applied to R′, G′, and B′

in order to obtain linear RGB values. For displays with standard phosphors,
these linear RGB values can then be converted to CIE XYZ tristimulus values
as follows:




X

Y

Z




=




0.4306 0.3415 0.1784

0.2220 0.7067 0.0713

0.0202 0.1295 0.9394



·




R

G

B



.
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Table 1
Approximate angular sizes and resolutions of TV systems at viewing distances of 3
and 6 times screen height.

System D vertical horizontal fmax

16:9 HDTV 6H 9.5◦ 17◦ 60 cpd

16:9 HDTV 3H 19◦ 34◦ 30 cpd

4:3 PAL 6H 9.5◦ 13◦ 30 cpd

4:3 NTSC 6H 9.5◦ 13◦ 25 cpd

4:3 PAL 3H 19◦ 25◦ 15 cpd

A B A B Vote

Fig. 1. Presentation sequence for the DSCQS method.

Excellent

Good

Fair

Poor

Bad

A B
100

0

Fig. 2. Rating scale for the DSCQS method.

Ref. Test Vote

Fig. 3. Presentation sequence for the DSIS method.

Imperceptible

Perceptible
but not annoying

Slightly annoying

Annoying

Very annoying

Fig. 4. Rating scale for the DSIS method.
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Fig. 5. Point spread function of the human eye as a function of visual angle [128].

0

10

20

30
400

500
600

700

0

0.2

0.4

0.6

0.8

1

Wavelength [nm]Spatial frequency [cpd]

S
en

si
tiv

ity

Fig. 6. Variation of the modulation transfer function of a human eye model with
wavelength [73].
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Fig. 7. Normalized spectral sensitivities of the three cone types: L-cones (solid),
M-cones (dashed), and S-cones (dot-dashed) [104].
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Fig. 8. Normalized spectral sensitivities of the three components black-white (sol-
id), red-green (dashed), and blue-yellow (dot-dashed) of the opponent-colors space
derived by Poirson and Wandell [85,86].
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[88].
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Fig. 10. Spatio-temporal contrast sensitivity functions of the B-W channel (top) and
the R-G channel (bottom) according to [12, 53–55]. The CSF of the B-Y channel
(not shown) is very similar in shape to the CSF of the R-G channel.
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Fig. 11. Idealized receptive field of a neuron in the primary visual cortex.

fx

fy

Fig. 12. Idealized illustration of a possible partitioning of the spatial frequency plane
as used in [131, 132]. The actual transitions between the bands are gradual. Three
spatial frequency levels with four orientations plus one (isotropic) low-pass filter are
shown. The shaded region indicates the spectral support of a single channel.
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Fig. 13. Frequency responses of sustained (low-pass) and transient (band-pass)
mechanisms of vision based on a model by Fredericksen and Hess [35,36].
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Fig. 14. Sample frame from MPEG-encoded Basketball sequence (top). The dis-
tortion map (bottom) contains spatial as well as temporal aspects of impairment
visibility [132].
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