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Abstract

We present a full- and no-reference blur metric as well as a full-reference ringing
metric. These metrics are based on an analysis of the edges and adjacent regions
in an image and have very low computational complexity. As blur and ringing are
typical artifacts of wavelet compression, the metrics are then applied to JPEG2000
coded images. Their perceptual significance is corroborated through a number of
subjective experiments. The results show that the proposed metrics perform well
over a wide range of image content and distortion levels. Potential applications
include source coding optimization and network resource management.
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1 Introduction

Tremendous advances in computer and communication technologies have led
to a proliferation of digital media content. However, digital images and video
are still demanding in terms of processing power and bandwidth, and thus
are often impaired by various types of artifacts such as noise, blockiness, blur,
ringing, etc. [1]. In order to optimize imaging systems and to improve the
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perceptual quality of delivered content, metrics are needed to identify and
measure these various artifacts.

Several perceptual metrics have already been developed for some of these
artifacts. We can distinguish two categories of metrics: full-reference and no-
reference. In the former case, a processed image is compared to a reference
(e.g. the original). In the latter case, the metric is not relative to a reference
image, but rather an absolute value associated to any given image. Much of the
research up to now has been on metrics falling in the full-reference category.
Quality assessment without a reference is intrinsically difficult, because the
distinction between image features and artifacts is often ambiguous. Most
existing no-reference metrics focus on blockiness, which is still relatively easy
to detect due to its regular structure — see e.g. 2| for a comparison of three
such metrics. More recently, we presented results on video quality assessment
for Internet streaming [3] and mobile applications [4] using a no-reference
quality metric.

In this paper, we are interested in two types of artifacts, namely blur and
ringing. Blur is due to the attenuation of the high spatial frequencies in the
image, and ringing is caused by the quantization of high frequency coefficients
in transform coding. Blur is characterized by a smearing of edges and a general
loss of detail, whereas ringing introduces ripples around sharp edges.

We present both full-reference (FR) and no-reference (NR) metrics that mea-
sure the perceptual amount of blur as well as a full-reference metric that
measures the amount of ringing. The proposed metrics are defined in the spa-
tial domain and are based on the analysis of the edges in an image. The blur
metric measures the spread of edges, and the ringing metric measures oscilla-
tions around edges. No assumptions are made on the type of content or the
particular blurring and ringing process. These objective measures correlate
well with the perception of blur and ringing. The proposed metrics also have
the advantage of a very low complexity and can therefore be used to analyze
video quality in real-time [3,4].

Image coding aims at minimizing the distortion of a compressed image for a
given bit rate (alternatively, one can minimize the bit rate for a given dis-
tortion level). This requires methods for accurately measuring the distortion
or quality of a coded image. The distortion is often evaluated by simple fi-
delity metrics such as Mean Square Error (MSE) or Peak Signal-to-Noise Ra-
tio (PSNR). Unfortunately, such metrics do not correlate well with human
perception. Therefore, perceptual metrics are needed for a more relevant mea-
surement of image quality, the ultimate goal being encoder optimization based
on these metrics. However, different coding schemes are characterized by very
different types of artifacts. For instance, the coding techniques based on the
Discrete Cosine Transform (DCT), such as those used in JPEG and MPEG,



mostly bring about blockiness artifacts. Conversely, the new JPEG2000 stan-
dard [5,6], which is based on a wavelet transform, mostly introduces blur and
ringing artifacts.

In this paper, the proposed blur and ringing metrics are applied to measure the
quality in JPEG2000 coded images. Note that the use of no-reference metrics is
especially interesting for the case of JPEG2000. Indeed, thanks to its scalable
properties, a JPEG2000 bitstream can be decoded at multiple quality levels
and /or resolutions. In the latter case, an original may not exist, which makes
it impossible to use a full-reference metric.

The paper is structured as follows. In Section 2, we illustrate the origins of
blur and ringing artifacts. We then describe the perceptual blur metric, which
was initially defined in [7], and use it in the design of a new ringing metric.
In Section 3, we validate each of our perceptual metrics via subjective exper-
iments and analyze the agreement between the metrics’ predictions and the
observer ratings. Finally, we draw some conclusions in Section 4.

2 Artifacts and Metrics

Blur in an image is due to the attenuation of the high spatial frequencies, which
commonly occurs during filtering or visual data compression. While measuring
the perceptual blur in an image or a video sequence has not yet been inves-
tigated, related research topics include blur identification [8], blur estimation
[9,10], image deblurring [11] and blind deconvolution [12]. In practice most of
these methods require iterative solving algorithms, which are computationally
demanding.

Ringing in an image is also caused by the quantization or truncation of the
high frequency transform coefficients resulting from DCT- or wavelet-based
coding. In the spatial domain this causes ripples or oscillations around sharp
edges or contours in the image. This is also known as the Gibbs phenomenon.
The problem of removing ringing artifacts is considered in [13] and solved using
a maximum-likelihood approach. A method for the detection of image regions
that exhibit ringing is presented in [14] as part of a blockiness measurement
technique.

In the lossy JPEG2000 compression scheme [5,6] for example, the standard
filter used for the wavelet decomposition is the Daubechies (9,7). Since the
decomposition is done in a separable manner, i.e. first on the rows and then
on the columns, it suffices to show the effect of these filters in 1D. Figure 1
illustrates the effects of blur and ringing on a sharp edge.



Fig. 1. Effect of Daubechies (9, 7) filter on a sharp edge.

Most of the papers cited above do not attempt to measure the perceptual
impact of these artifacts. However, it is of great importance to be able to
objectively quantify the perceived blur and ringing in an image. The goal
is to establish metrics which correlate with the human visual experience by
mapping the objective measurements onto subjective test results.

Our blur and ringing metrics are defined in the spatial domain. Both artifacts
appear mostly along edges or in textured areas. The proposed blur metric
thus attempts to measure the spread of the edges, whereas the ringing metric
measures the ripples or oscillations around these edges.

For color images, blur and ringing are measured on the luminance component.
While the algorithms consider primarily still images, it is straightforward to
extend the techniques to digital video by measuring the artifacts in every
frame [3,4]. The low algorithmic complexity is essential in this case in order
to be able to measure the distortions in real time.

2.1 Blur Metric

Our technique for measuring blur is based on the smoothing or smearing ef-
fect of filtering or compression on sharp edges, and consequently attempts to
measure the spread of the edges. The algorithm is summarized in Figure 2.

First we apply an edge detector (e.g. a Sobel filter) to the luminance compo-
nent of the image. Noise and insignificant edges are removed by applying a
threshold to the gradient image. We then scan each row of the processed im-
age. For pixels corresponding to an edge location, the start and end positions
of the edge are defined as the locations of the local luminance extrema closest
to the edge. The spread of the edge is then given by the distance between the
end and start positions, and is identified as the local blur measure for this
edge location. The global blur measure for the whole image is obtained by
averaging the local blur values over all edges found.

An example of a row in an image is illustrated in Figure 3. For the edge location
P1, the local maximum P2 defines the start position, while the local minimum



Find strong vertical edges in the original image

|

For each corresponding edge in the processed image:
Find the start and end positions of the egde
(local maximum and local minimum)

J

Calculate edgewidth (local blur)

J

Sum of all edgewidths
Number of edges

Blur Measure =

Fig. 2. Flow chart of the full-reference blur metric. In the no-reference case, the
processed image replaces the original image in the first box.
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Fig. 3. One row of the blurred image. The detected edges are indicated by the
dashed lines, and local minima and maxima around the edge by dotted lines. The
edge width at P1 is P2/ — P2.

P2’ corresponds to the end position. The spread of the edge is P2’ — P2 = 11
pixels in this example. Similarly, for the edge P3, the local minimum P4 is the
start position, the local maximum P4’ is the end position, and P4 — P4 =6
pixels is again the spread.

In the algorithm described above, only vertical edges are considered. This
is done mostly for performance reasons. It is obviously an approximation,
as only the blur projected onto the horizontal direction is measured. The
algorithm can easily be extended to the horizontal edges by filtering with a
horizontal Sobel filter and then scanning each column. It is also possible to
measure blur along the actual local edge gradients by taking into account the
gradient orientation. However, our tests showed that this does not improve
the measurements; using the vertical edges is sufficient in practice.

The algorithm described here lends itself to both a full-reference and a no-
reference implementation. In the full-reference blur metric, we use the edges



of the original image to determine the edge locations. For the no-reference
blur metric, the edges are obtained directly from the processed/compressed
image [7]. While this affects the precision of edge detection to a certain extent
(depending on the amount of compression or distortion), it is still possible to
achieve good correlations with perceived blur, as will be shown in Section 3.

In addition to encoder optimization applications, the blur metric can also be
used for autofocusing an image capturing device.

2.2  Ringing Metric

The ringing metric is based on and makes use of the blur metric described in
the previous section. The algorithm is summarized in Figure 4.

‘ Find strong vertical edges in the original image ‘

J

‘ Calculate left and right edgewidth ‘

|

For each corresponding edge location in processed image:
Left ringwidth = fixed ringwidth - left edgewidth
Right ringwidth = fixed ringwidth - right edgewidth

J

Calculate the difference image
d = processed image - reference image

J

Left ring measure = left ringwidth * | max(d) - min(d) |
Right ring measure = right ringwidth * | (max(d) - min(d) |

J

Sum of left and right ring measures
Number of edges

Ring Measure =

Fig. 4. Flow chart of the full-reference ringing metric.

Similar to the blur metric, the ringing metric is defined for each important
vertical edge. It first finds the vertical edges in the original image (weak edges
and noise are again discarded by means of thresholding) and calculates the
difference between the processed image and the reference. It then scans each
row in the processed image and measures the ringing around each edge.

We define a left and a right ring measurement. Furthermore, we define the
ringing support as a fixed ringwidth (given a priori from the effects of the
wavelet decomposition filters, cf. Figure 1) minus the edge width due to blur
(as defined in the blur measurement in the previous section). Then we take
the difference between the minimum and the maximum of the difference image
inside this support and multiply by the ringing support width. We add the



left and right ring measures and take an average over all edges to obtain the
global ringing measurement.

The ringing along an image row with two sharp edges is illustrated in Figure 5.
The left edgewidth as defined previously is |P3 — P1|. The left ringwidth is
|P3' — P3|, where P3' = P1 + fixed ringwidth. The left ring measurement is
calculated as | max(L1— L2) —min(L1— L2)|%|P3’ — P3|, where the maximum
and minimum of the difference between reference and processed are computed
over the left ring support between P3’ and P3. The same quantities are com-
puted on the right side of the edge.
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Fig. 5. The dotted line L1 is one row of the original image. The solid line L2 is the
same row of the JPEG2000 coded image. Ringing can be observed around the edge
at P1 between P3 and P3’ as well as P2 and P2’.

3 Experiments and Results

To corroborate the perceptual relevance of our metrics, we carried out two
sets of subjective experiments. We asked ten expert viewers to evaluate — in
separate sessions — the blur and the ringing perceived in a set of test images.
The images are shown in random order, and the observers are asked to quantify
the amount of the respective distortion for each image on a scale from 0 (no
distortion visible) to 10 (maximum distortion). The average observer ratings
are then compared to the predictions of the blur and ringing metrics. Finally,
in Section 3.3 we use our metrics to predict the overall quality of JPEG2000-
coded images and evaluate the prediction performance with the help of the
LIVE Image Quality Assessment Database [15].



3.1 Perceived Blur

We consider the five 24-bit color images of size 768 x 512 shown in Figures 6
and 7(a). Blur is induced in two ways:

e The images are compressed in JPEG2000 with five different compression
ratios C'r € {40, 80,120, 160, 200}, yielding 25 test images.

e The images are filtered with a Gaussian filter with five different standard
deviations o € {0.4,0.8,1.2,1.6,2} pixels, yielding another 25 test images.

We thus obtain a total of 55 test images (including the originals). Figures 7(b,c)
show examples of maximum JPEG2000 compression and maximum Gaussian
blur, respectively.

Fig. 6. Test images.



(¢) Maximum Gaussian blur (o = 2).

Fig. 7. Motocross test image demonstrating the maximum distortion levels.



Figure 8 illustrates the behavior of the blur metric across distortion levels.
The strong linear relationship is consistent for all the test images.
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Fig. 8. Behavior of blur metric for the motocross test image. (a) Blur measurement
versus compression ratio; (b) blur measurement versus standard deviation of the
Gaussian blurring filter.

Figure 9 illustrates the correlation between the subjective blur ratings and the
proposed full-reference and no-reference blur metrics. We obtain 87% linear
correlation and 85% rank-order correlation between our full-reference blur
metric and perceived blur. For the no-reference blur metric, the correlations
decrease to 73% and 81%), respectively (see also Table 1 below). This is mainly
due to the problem of reliably detecting the edges in the processed image: as
blur increases, the number of edges found by the Sobel filters goes down, which
reduces the number of local blur measurements. This is one of the weak points
of the NR metric, and using a more advanced edge detection method would
certainly make it more robust. However, low complexity was one of our prime
objectives in the design of these metrics.

In general, the difficulty lies mainly in predicting the perceived blur for two
distinct blur sources (Gaussian filtering and JPEG2000 compression) with a
common metric, as can be seen from the plots. If we analyze the metrics’
predictions for these two sets separately, we can obtain correlations as high as
98%. The additional artifacts introduced by JPEG2000 compression change
the observers’ perception of blur with respect to the Gaussian case and thus
affect the overall prediction performance of our metrics.

3.2 Perceived Ringing

Here we extend the original test set from the previous section to include the
additional images shown in Figure 10 for a total of 9 original images. They
are compressed in JPEG2000 with the same five compression ratios as in
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(a) Full-reference blur metric.

10

Subjective blur rating
—e—
—e—
—e—
i
—
——

e

I I I I I I I I I
4 5 6 7 8 9 10 11 12 13 14

No reference objective blur measure

(b) No-reference blur metric.

Fig. 9. Error-bar plots with 95% confidence intervals of subjective blur ratings
versus objective blur measurements for Gaussian filtered images (small dots) and
JPEG2000 coded images (open circles).

Section 3.1, namely Cr € {40, 80,120, 160,200}. We thus obtain a total of 54
test images, including the originals.

Figure 11 illustrates the subjective ring ratings versus the perceptual full-
reference ringing metric with correlations of approximately 85%. The lower
correlations (compared to the blur metric) can partly be explained by the fact
that the viewers found it more difficult to evaluate the ringing artifacts in the
JPEG2000 coded images. Furthermore, the effects of ringing are not always
as well-behaved as in Figure 5, which affects the ringing measurements, and
also thwarted our efforts to use the metric in the no-reference case.

The correlations between the subjective blur/ringing ratings and the proposed
blur/ringing metrics are summarized in Table 1.

11



Fig. 10. Additional test images for the ringing experiment.
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Fig. 11. Error-bar plot with 95% confidence intervals of subjective ring ratings versus
the full-reference perceptual ringing measurement for JPEG2000 coded images.

Correlations: Linear Rank-order

Full-reference blur  87% 85%
No-reference blur  73% 81%
Full-reference ringing  85% 86%

Table 1
Correlation between average observer ratings and the proposed perceptual blur and
ringing metrics.

3.3 Percewed Quality of JPEG2000 Images

In addition to the artifact-specific experiments for blur and ringing described
above, we also test the performance of our metrics as a predictor of overall
perceived image quality. For this we use the subjectively rated JPEG2000-
coded images from LIVE Image Quality Assessment Database [15], which was

12



made available recently by the University of Texas at Austin.

The test images in this database were created by compressing 29 RGB color
images (typically of size 768 x 512 pixels) using Kakadu’s JPEG2000 encoder.
Compression ratios range from 7.5 to 800, yielding a total of 169 compressed
images. The subjective experiments were conducted in two separate sessions
with 29 and 25 observers, respectively; the original uncompressed images were
included in both. Observers provided their quality ratings on a continuous
linear scale from 1 (lowest quality) to 100 (highest quality), which was marked
with the adjectives “Bad”, “Poor”, “Fair”, “Good” and “Excellent”. Refer to
[15] for more information about the experiments.

We screened the subjective ratings for outliers according to I'TU-R Rec. BT.500
[16]. For our analysis, we combined the data from the two test sessions and
computed the mean opinion scores (MOS) and the corresponding 95% confi-
dence intervals. Thanks to the large number of observers, the average confi-
dence interval size is only 4.2 (on the 1-100 scale).

As shown in Figure 12, PSNR is already an excellent predictor of perceived
quality for this database: the correlation with MOS is about 91%. These good
results can be attributed largely to the fact that the database contains ex-
clusively images created with a single type of encoder (JPEG2000) and thus
only varying degrees of the same distortions. Note the saturation of the scatter
plot towards high PSNR — this indicates that the database includes a number
of compressed images in which subjects were unable to discern any quality
degradation.
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Fig. 12. Subjective MOS versus PSNR. The error bars indicate the 95% confidence
intervals of the subjective ratings.

Combining our full-reference metrics for blur and ringing to a full-reference
quality metric, we achieve a slight outperformance of PSNR (see Table 2 be-
low). However, given the good prediction performance of PSNR in this exam-
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ple, which is very close to the average correlation between individual subjects
and MOS, it would be difficult to justify using any kind of more complex FR
metric. We therefore focus on a no-reference solution based on the NR blur
metric introduced in Section 2.1 above. More specifically, its MOS prediction
is a simple non-linear transformation of the measured blur.

To evaluate its prediction performance, we separate the test images into a
training set and a test set, using 100 different random divisions of the dataset.
Figure 13 shows the results for our no-reference quality metric with the pa-
rameters obtained in the training. The saturation in the high quality regime is
very similar to the behavior of PSNR. It achieves correlations of around 85%
with MOS on the test sets, which is quite a good prediction performance for
an NR metric.
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Fig. 13. Subjective MOS versus NR quality metric. The error bars indicate the 95%

confidence intervals of the subjective ratings. Crosses denote images with very small
depth of field (see text).

The most significant outliers are due to two specific pictures, namely one close-
up and one macro shot with very small depths of field (they are marked with
crosses in Figure 13). Since our blur metric does not distinguish between blur
as a compression artifact and any other blur in the image, its MOS predictions
for these images are too low in comparison to the observers’ ratings, who do
not consider this type of blur a degradation of quality. In one form or another,
this problem is intrinsic to any no-reference metric. An added detector for
distinguishing central objects from the potentially blurred background could
help alleviate this problem when using our metric for the assessment of com-
pression artifacts. In fact, when these two images are removed from the test
set, the prediction performance of our NR metric approaches that of PSNR.
All these results are summarized in Table 2.

We can also compare these results with an NR quality metric for JPEG2000-
coded images described in [17], which is based on a statistical model for
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Linear Rank-order Prediction

correlation correlation error

PSNR 91% 92% 9.7

Full-reference metric 94% 93% 9.5
No-reference metric 86% 84% 12.1
NR metric w/o outliers 90% 88% 10.1

Table 2
Prediction performance of the proposed quality metrics. The bottom row refers to
the exclusion of the images with very small depth of field (see text).

wavelet coefficients and their quantization. Its design allows it to analyze the
JPEG2000 image quality without decoding. This metric was evaluated using
the same database, albeit with a slightly different computation of the mean
ratings [17]. Its predictions have an RMSE of 9.8; its correlations are not re-
ported, unfortunately. Since this metric only looks for compression artifacts,
it does not suffer from the problem with images with a small depth of field.
On the other hand, it cannot be used for images with blur coming from other
sources than JPEG2000 compression.

On a final note, the bitrate of the encoded images alone is just as good an
estimate of MOS as PSNR for the given database, and could thus be used for
no-reference quality prediction here as well.

4 Conclusions

We presented a full-reference and a no-reference metric for perceived blur as
well as a full-reference metric for perceived ringing. The metrics are of very
low computational complexity and are shown to be in good agreement with
observer ratings obtained in subjective experiments. Potential applications of
such metrics include source coding optimization and network resource man-
agement. Future research will focus on the measurement of ringing without a
reference, the consideration of color, and other types of perceptual artifacts.
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