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A Hybrid Framework
for 3D Human Motion Tracking

Bingbing Ni, Ashraf Ali Kassim, Stefan Winkler

Abstract—In this paper, we present a hybrid framework for ar-
ticulated 3D human motion tracking from multiple synchronized
cameras with potential uses in surveillance systems. Although
the recovery of 3D motion provides richer information for event
understanding, existing methods based on either deterministic
search or stochastic sampling lack robustness or efficiency.

We therefore propose a hybrid sample-and-refine framework
that combines both stochastic sampling and deterministic op-
timization to achieve a good compromise between efficiency
and robustness. Similar motion patterns are used to learn a
compact low-dimensional representation of the motion statistics.
Sampling in a low-dimensional space is implemented during
tracking, which reduces the number of particles drastically.
We also incorporate a local optimization method based on
simulated physical force/moment into our framework, which
further improves the optimality of the tracking.

Experimental results on several real human motion sequences
show the accuracy and robustness of our method, which also has
a higher sampling efficiency than most particle filtering based
methods.

Index Terms—Articulated 3D human motion tracking, particle
filter, vector quantization principal component analysis, simu-
lated physical force/moment

I. I NTRODUCTION

M ULTIPLE view based, marker-less articulated human
motion tracking has attracted a growing interest in

recent years, primarily because of a large number of potential
applications such as motion capture, human computer interac-
tion, virtual reality, smart surveillance systems etc. However,
most existing systems track the target as 2D blobs, from
which only coarse behavior information can be extracted, e.g.,
walking, running, etc. Other systems such as [1]–[3] use a 2D
image analysis approach to detect certain events, e.g., shaking
hands, falling down, fighting. Additional tracking information
such as articulated 3D motion, which is investigated in this
paper, can help to obtain a more detailed understanding of
human actions and interactions. However, due to the high
dimensionality of human body motion, the 3D tracking prob-
lem is inherently difficult. A variety of approaches have been
proposed – see [4], [5] for comprehensive surveys.

Gavrilla and Davis [6] are among the first to address the
problem of tracking articulated 3D human motion by multiple
synchronized images. They project a kinematic 3D human
model onto each image plane and define the tracking problem
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as searching for the best fit between the projected model and
the image contours.

Yamamoto et al. [7] carry out tracking by estimating the
increment of the body pose vector between two successive
images. They obtain the pose vector increment by solving a
set of linear equations, which relate the image flow estimated
from each view to the motion parameters of the articulated
objects. Bregler and Malik [8] model the 3D human model
by twists and exponential maps to perform a local search for
pose estimation. Kehl and Gool [9] propose a method which
takes reconstructed human voxel data as system input, and
they develop a stochastic meta descent (SMD) optimization
algorithm to perform human motion tracking.

Given the human model and the observed scenes, e.g., image
contours or 3D reconstructions, the tracking problem could
also be formulated as a registration problem. Delamarre and
Faugeras [10] propose a method which creates forces between
the 3D human model and the detected image contours of the
moving person to align them. They also apply this concept
directly to the 3D domain [11], where the physical forces
are generated between the human model and the densely
reconstructed 3D points of the scene. The human pose vector
is updated by recursively solving a set of dynamics equations.

Kakadiaris and Metaxas [12] develop a similar framework
for tracking the motion of human body parts from one or
multiple cameras based on information extracted from the
occluding contours. Tracking is based on applying forces
generated by the displacement of the occluding contours and
the model parts. They also adopt an extended Kalman filter
(EKF) to predict the motion between consecutive frames. Their
method is capable of auto-selecting a view point which gives
the most important tracking information.

For many of the systems cited above, tracking robustness
remains an issue since global optima are not guaranteed by
these gradient-based or force-based optimization procedures.
Such methods may easily be trapped in local minima for a
long motion sequence due to error accumulation [7] and are
sensitive to image noise, foreground segmentation errors,self-
occlusion, etc. To address the robustness problem, a large
number of algorithms based on stochastic sampling have
been proposed, including particle filters [13]–[16] and related
sampling-based approaches such as unscented Kalman filter
[17], [18], belief propagation [19], Markov network [20] etc.
These sampling-based techniques provide a promising prob-
abilistic framework, which can handle high dimensionality,
nonlinear and non-Gaussian problems, while avoiding complex
analytical computations. However, in order to approximatethe
underlying posterior density for a high-dimensional problem
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like human motion tracking, a large number of particles are
needed, which is impractical and makes the evaluation of the
likelihood function very time-consuming.

There exist some methods which improve the classical
particle filter method in terms of computational efficiency.
Deutscher et al. [14] propose an annealed particle filter ap-
proach for full body motion tracking. Using a well designed
simulated annealing strategy, they reduce the number of parti-
cles from104 to 102. Lee et al. [16] introduce a framework that
integrates analytical inference into the particle filtering scheme
to reduce the computational load as well as to auto-initialize
and auto-recover from tracking failure. Han and Huang [19]
propose a dynamic belief propagation framework that acceler-
ates the articulated tracking algorithm by adaptively selecting
the search space based on the prediction of human motion
dynamics.

Recent success on learning probabilistic models from a
small training set has made it possible to further improve the
Bayesian tracking of human motion. Following the idea of
statistical modeling of images for texture synthesis, Sidenbladh
et al. [21] describe an approach that models the appearance of
articulated 3D objects into a linear subspace via weighted prin-
cipal component analysis (PCA). This generative appearance
model improves the performance of their particle filter track-
ing framework. Nonlinear dimensionality reduction techniques
such as locally linear embedding (LLE) are also exploited to
model the dynamic appearance of human motion [22]. Given a
training database of human motion capture data, the statistics
of human motion dynamics can be modeled directly. Gall
et al. [15] present a method that integrates prior statistical
information about the pose configurations into the general
model of particle filter and therefore reduce the number of
particles required. Sidenbladh et al. [23] further proposea
method that represents the implicit empirical distribution of
fixed length motion sequences data in a low dimensional space
by PCA. Therefore tracking is equivalent to searching the best
matching sequence example in the training database.

In our work, the reconstructed human surface points and
normals from multi-view images are analyzed to enable iden-
tification of the human pose in each frame. Prior informa-
tion is based on a small set of training samples of motion
capture data. Our approach is significantly different from
those presented in [15], [23]. Instead of modeling the low
dimensional subspace of the fixed length motion segments [23]
or learning the probability distribution of human motion inthe
original high-dimensional space [15], the proposed algorithm
attempts to directly model the pose configuration statistics
in a lower-dimensional space using a method from [24] for
dimensionality reduction. Due to this compact representation,
our stochastic sampling can be conducted in a much lower-
dimensional space resulting in a much smaller number of
required particles compared to [15].

The method proposed in this paper is essentially a hybrid
tracking framework, which combines stochastic sampling us-
ing a particle filter with a deterministic searching algorithm
based on simulated physical force/moment based 3D regis-
tration [25]. This sample-and-refine strategy [26] helps us
achieve more efficient sampling and more accurate tracking.

An additional contribution of our work is the time series
extension of vector quantization principal component analysis
(VQPCA) [24] to model the statistics of human motion in a
compact way. Combined with our modified particle filter, this
significantly improves the sampling efficiency.

Qualitative and quantitative experimental results show that
the proposed framework achieves a good compromise between
accuracy, robustness and tracking efficiency. The limitation of
our method is the need for a training step, in which motion
patterns similar to the ones of interest have to be learned by
the system.

The paper is organized as follows: Section II describes
our human model. Section III outlines the 3D human recon-
struction method used. Section IV describes our probabilistic
modeling of human motion in detail. Section V explains the
hybrid tracking framework including the modified particle
filtering scheme and the proposed local optimization algo-
rithm. Section VI shows and discusses experimental resultsfor
several human motion sequences, and Section VII compares
the performance of our framework with two other methods.
Section VIII concludes the paper.

II. 3D HUMAN MODEL

For a computationally efficient representation of the human
body, we use a simple cylinder model similar to [27], which
is shown in Fig. 1. The torso can be regarded as a degenerate
cylinder since it has an elliptical cross-section. For eachpart
except the torso, a local coordinate frame is defined with
the origin at the base of the cylinder. These origins also
correspond to the center of rotation of each body part. The
global coordinate system originates at the center of the torso.
The body parts and corresponding parameters are indexed from
0 to 9.
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Fig. 1. 3D human model.

Human kinematic knowledge is employed as a prior to
define the degrees of freedom (DoF) for our human model.
We incorporate 25 DoF: 3 DoF for upper arms, legs and
head (rotating about their X, Y and Z axes), 1 DoF for
lower arms and legs (they are only allowed to rotate about
their X axes), and 6 DoF for the torso (global translation
and rotation). With these definitions, the entire 3D pose
of the body is determined by a 25D pose vectorx =
(t0x, t0y, t0z, θ0x, θ0y, θ0z, θ1x, θ1y, θ1z, θ2x, ...)T , which con-
tains the joint angles of shoulders, elbows, hips, and knees,
plus the global position and orientation of the torso.
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To further constrain this high-dimensional solution spaceas
well as to eliminate the ambiguity during tracking, two types
of motion constraints are imposed:

1) Kinematic constraints:The connectivity between adja-
cent body parts as well as the length constancy of the
body parts are enforced through kinematic constraints.
Each body part is only allowed to move according to its
DoF (e.g., the lower arms are only allowed to rotate about
their X axes).

2) Joint angle limits: For real human motion, the joint
angles between adjacent body parts are limited to a
certain range (e.g., the elbow can only rotate by 135
degrees around its X axis). This constraint further reduces
the solution space.

In Section V we show how our simulated physical
force/moment based local optimization algorithm automati-
cally incorporates the above constraints.

III. 3D RECONSTRUCTION OF THEHUMAN BODY

The inputs to our tracking framework are the sparsely re-
constructed human surface points and surface normals, which
can be obtained via a standard 3D reconstruction algorithm
given multiple synchronized images and camera calibration
parameters. Segmented human silhouettes can be computed
by the foreground detection method [28] provided with the
background statistics.

We adopt the well-known visual hull method as described in
[29], [30] to reconstruct the 3D scene points as well as their
surface normal vectors. These surface reconstruction points
are obtained by intersecting the viewing cones from each
view, and their corresponding normals are given by the cross
product between the viewing lines and the tangent to the image
silhouette.

IV. PROBABILISTIC MODEL OF HUMAN MOTION

Given a sequence of training motion datax1, x2, ...xT in
temporal order, our goal is to model the low-dimensional
statistical representation of the spatial-temporal structure of
the human motion. PCA [31] is a very popular technique
to deal with this dimensionality reduction problem by pro-
viding a sequence of best linear approximations to a given
high-dimensional dataset. However, the human motion statis-
tics are nonlinear and multimodal, which violates the basic
PCA assumption of global linearity. Some manifold learning
techniques have been developed to deal with the nonlinear
dimensionality reduction problems (e.g., LLE [32], Laplacian
eigenmap [33], ISOMAP [34]), but these involve the use of the
original high-dimensional datasets. Therefore they are unable
to deal with novel inputs and not ready for applications such
as tracking.

In this work, we adopt the technique of VQPCA [24]
by developing a time series extension of the basic VQPCA
learning algorithm to model human motion. VQPCA is a
non-parametric, nonlinear dimensionality reduction technique,
which is suitable for modeling nonlinear data structures like
human motion data and also provides the orthogonal pro-
jection basis flexible enough to handle novel inputs. The

basic idea of VQPCA is to first partition the data space,
in this case the motion space, into disjoint Voronoi regions
using vector quantization and then perform local PCA about
each cluster center. This technique is suitable for probabilistic
modeling of human motion, where the whole motion sequence
is partitioned into states{s|s ∈ (q1, q2, ...qM )}, all pose
vectorsx1, x2, ...xT are considered as observations of these
states, and the transition probabilities between states/regions
are also defined. In VQPCA, each state naturally corresponds
to a Voronoi region, and thus local PCA can be performed
within each region, given that its statistical distribution can
be approximated by a single Gaussian distribution. In parallel,
state transition probabilities are modeled using hidden Markov
models (HMM).

We use an expectation-maximization (EM) [35] framework
to simultaneously partition the motion data, perform the
subspace learning and estimate the transition probabilities as
follows:

1) Initialization:
All training data x1, x2, ...xT are partitioned intoM
Voronoi regionsR1, R2, ...RM , which correspond toM
statesq1, q2, ...qM of human motion. Each regionRi

is modeled by a centerr i, which is randomly selected
from the training data, and an × n covariance ma-
trix Σi, which is initialized to be identity;n is the
dimensionality of the pose vectorxt. e(i)

1 , ...e(i)
n are n

eigenvectors ofΣi; the first m eigenvectors compose
the linear basisPi = (e(i)

1 , ...e(i)
m ), which projects the

original n-dimensional vectorxt to its m-dimensional
subspacezt. Λi = PT

i ΣiPi is the associated covariance
matrix in the m-dimensional space. As in HMM, the
state transition probabilities{aij |i, j = 1, 2, ...M} are
initialized to be equal, e.g.,1/M2. The choice ofM is
important in the training phase – ifM is too small, the
underlying non-Gaussian distribution would not be well
approximated; ifM is too large, there over-fitting could
occur. Therefore, we try out several different values of
M and choose the one that still produces a reasonably
low average reconstruction error on the training data.

2) Expectation:
As in the HMM, the forward probabilities{αt(j)|j =
1, 2, ...M} and backward probabilities{βt(j)|j =
1, 2, ...M} are recursively updated as follows:

αt(j) = p(x1:t, st = qj |λ) (1)

= bj(xt)
M∑

i=1

αt−1(i)aij (2)

α1(j) = πjbj(x1) (3)

βt(i) = p(xt+1:T |st = qi, λ) (4)

= [
M∑

j=1

aijbj(xt+1)βt+1(j)] (5)

βT (i) = 1 (6)

Here bj(xt) is the likelihood of being in stateqj given
the observationxt at time instantt. In our work, we
assume it to be a single Gaussian density, i.e.,bj(xt) ∼
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φ(r j ,Σj). πj is the initial probability of stateqj , which
is assumed to be equal for all states.x1:t denotes the
observation sequence of motion vector(x1, x2, ...xt). λ
represents the parameters of the HMM model, i.e.,λ =
(aij , πj , r j ,Σj |i, j = 1, 2, ...M).
The probability of being in statej at time instantt is
given by:

γt(j) =
αt(j)βt(j)

p(x1:T |λ)
(7)

Here p(x1:T |λ) is the probability of observing the se-
quencex1, x2, ...xT given λ, which can be considered a
normalization constant.

3) Maximization:
All training data are partitioned intoM regions
R1, R2, ...RM according to their reconstruction distance
d(xt, r i):

Ri = {xt|d(xt, r i) ≤ d(xt, r j);∀j 6= i} (8)

d(xt, r i) = ‖xt − r i −

m∑

j=1

zje(i)
j ‖2 (9)

= (xt − r i)
T TiT

T
i (xt − r i) (10)

Here Ti is composed of the trailing eigenvectors ofΣi,
i.e., Ti = (e(i)

m+1, ...e
(i)
n ).

The generalized centroidr i of the regionRi is updated
via minimizing the cost function:

r i = arg min
r

1

Ni

∑

xt∈Ri

(xt − r i)
T TiT

T
i (xt − r i) (11)

There exist several solutions to the above equation; ac-
cording to [24], a convenient choice is:

r i = xt =
1

Ni

∑

xt∈Ri

xt (12)

and

Σi =
1

Ni

∑

xt∈Ri

(xt − r i)(xt − r i)
T (13)

The projection matrixPi is then updated by them
eigenvectors corresponding to them largest eigenvalues
of the new covariance matrixΣi:

Pi = (e(i)
1 , e(i)

2 , ...e(i)
m ) (14)

Finally, the transition probabilities are updated as:

ξt(i, j) = p(st = qi, st+1 = qj |x1:T , λ) (15)

=
αt(i)aijbj(xt+1)βt+1(j)

P (x1:T |λ)
(16)

aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(17)

The above steps are iterated until there is no significant
change in the average reconstruction error. We then get a set
of Voronoi regions(R1, R2, ...RM ) and their corresponding
linear subspace basis(P1, P2, ...PM ). To encode a novel input
x, we assign it to its corresponding regionRi according to

the reconstruction distance, then project it to its local linear
subspace:

z = (z1, z2, ...zm)T = (e(i)
1 · (x− r i), ..., e(i)

m · (x− r i))
T (18)

and reconstruction is done as:

x̂ = r i +
m∑

j=1

zje(i)
j (19)

V. HYBRID HUMAN MOTION TRACKING FRAMEWORK

A. Modified Particle Filtering

In the Bayesian framework, the task of human motion
tracking can be formulated as inferring maximum a posterior
(MAP) of the joint probabilityp(xt, st|I1:t) given the image
observation sequenceI1:T = (I1, I2, ...It). Provided with
the previous estimation of the densityp(xt−1, st−1|I1:t−1),
inferring the posterior density of the current frame is therefore
expressed as:

p(xt, st|I1:t) = κp(It|xt, st)×∫
p(xt, st|xt−1, st−1, I1:t−1)×

p(xt−1, st−1|I1:t−1)dxt−1dst−1 (20)

whereκ is a normalization constant.p(It|xt, st) is a likelihood
term, which measures the probability of observingIt given the
motion statest and pose vectorxt. The detailed definition
of the likelihood function will be given in Section V-B.
p(xt, st|xt−1, st−1, I1:t−1) models the transition probability of
the motion dynamics.

Although it would be impossible to develop an analytical
expression of the posterior density, we can approximate it
by a set of weighted pose and state vectors calledparticles.
Each particlei is denoted as(s(i)

t , x(i)
t , ω

(i)
t ), representing

the motion state, pose vector and the associated likelihood
weight. In a particle filter scheme, these weighted particles
are propagated throughout consecutive frames via sequential
importance sampling [36]. We define the importance density
as:

q(xt, st|xt−1, st−1, I1:t−1) = p(xt, st|xt−1, st−1, I1:t−1)
(21)

Further factorization of this expression gives:

p(xt, st|xt−1, st−1, I1:t−1) =

p(st|xt−1, st−1, I1:t−1) × p(xt|st, xt−1, st−1, I1:t−1) (22)

The second term can be simplified as:

p(xt|st, xt−1, st−1, I1:t−1) = p(xt|st, xt−1, st−1) (23)

if we assume that the transition probability is independentof
the observation sequence. Also, assuming first a order Markov
chain, the first term is trivially equal to the state transition
probability, i.e.,

p(st|xt−1, st−1, I1:t−1) = p(st = qj |st−1 = qi) = aij (24)

Two important features distinguish our sampling and fil-
tering scheme from the general particle filter algorithm.
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First, special treatment is adopted when sampling from
p(xt|st, xt−1, st−1) to achieve our idea of sampling in a low-
dimensional space. For each selected particlei, we first locally
project it into the linear subspace of its Voronoi regionRj

with (r j ,Σj , Pj = (e(j)
1 , e(j)

2 , ...e(j)
m ),Λj = PT

j ΣjPj) (for
notational simplicity, we ignore the region indexj in the rest
of the paper), i.e.,

z(i)
t−1 = (e1·(x

(i)
t−1−r), e2·(x

(i)
t−1−r), ..., em·(x(i)

t−1−r))T (25)

Then new samples are drawn from the low-dimensional
space according to the Gaussian densityz(i)

t ∼ (z(i)
t−1,Λ),

wherez(i)
t is a m-dimensional vector(m ≪ n) in the linear

subspace of Voronoi regionR. This sampling scheme dras-
tically reduces the number of required particles accordingto
the theory of particle filters [37], i.e., based on a lower bound
of the number of required particles:N ≥ Dmin/αd, whereN
is the number of particles required,d is the dimension of the
sampling space,Dmin, α are constants andα ≪ 1. Obviously,
for a low dimensiond, much fewer samples are needed.

Later, to evaluate the likelihood, each low-dimensional sam-
ple z(i)

t is synthesized into the original dimension according
to its Voronoi regionR, i.e.,

x̂(i)
t = r +

m∑

j=1

z
(i)
tj ej (26)

The second distinguishing feature is our sample-and-refine
strategy, where each new particle is optimized to its nearby
local peak of the posterior density after sampling by our
proposed simulated physical force/moment based optimiza-
tion scheme (see Section V-B below). This strategy further
imrpoves the performance of our tracking algorithm.

The overall framework of our modified particle filter can be
summarized as follows:

1) Objective:
From a set of particles{s(i)

t−1, x(i)
t−1, ω

(i)
t−1, i = 1, 2...N}

at time step t − 1, construct a new sample set
{s

(i)
t , x(i)

t , ω
(i)
t , i = 1, 2...N} to represent the posterior

density of the current frame.
2) Selection: Randomly draw a sample(s′(i)t−1, x′(i)t−1) ∼

{s
(i)
t−1, x(i)

t−1, ω
(i)
t−1, i = 1, 2...N}, according to the weights

{ω
(i)
t−1, i = 1, 2...N};

3) Sampling:
For each particle(s′(i)t−1 = qL, x′(i)t−1)

(a) Draw a new state according to the state transition
probability, i.e.,s(i)

t ∼ {aL1, aL2, ...aLM}. The new
state is denoted as:s(i)

t = qC , which corresponds to
Voronoi regionR with (r ,Σ, P = (e1, e2, ...em),Λ =
PT ΣP ).

(b) Projectx′(i)t−1 into the linear subspace of regionR, i.e.,

z′(i)t−1 = (e1·(x
′(i)
t−1−r), e2·(x

′(i)
t−1−r), ..., em·(x′(i)t−1−r))T

(27)
(c) Draw a new low-dimensional sample according to the

Gaussian density i.e.,z(i)
t ∼ φ(z′(i)t−1,Λ);

(d) Reconstruct̂x(i)
t in the original dimension space, i.e.,

x̂(i)
t = r +

m∑

j=1

z
(i)
tj ej (28)

4) Refinement:

For each particle(s(i)
t = qC , x̂(i)

t ), perform the refinement
by our simulated physical force/moment algorithm on
x(i)

t .
5) Weighting:

Evaluate the likelihood weight of each particle according
to the likelihood functionω(i)

t ∝ p(It|x
(i)
t , s

(i)
t ) proposed

in Section V-B.
Now a new set of particles which approximate
the posterior density of timet are obtained, i.e.,
{s

(i)
t , x(i)

t , ω
(i)
t , i = 1, 2...N}. Using the idea of sampling

in the linear subspace, we significantly reduce the number
of particles required.

B. Local Optimization Using Simulated Physical
Force/Moment

Given a set of 3D reconstruction points with surface normals
for each frame and a 3D human model composed of a set of
connected body parts, our likelihood function is designed as:

p(It|xt, st) = κe−D/σ2

(29)

where κ is some normalization constant,σ is the variance.
The distance termD is the average distance between 3D scene
pointspi and the corresponding points on the 3D modelp′

i:

D =
1

S

∑

i

d(pi, p′

i) (30)

S is the number of scene points, and

d(pi, p′

i) = ρ

((
md(np

i
, np′

i

)‖
−−→
pip

′

i‖
)2

)
(31)

Here‖
−−→
pip

′

i‖ denotes the Euclidean distance between a scene
point pi and its corresponding point (i.e., the closest) on
the modelp′

i. It is modulated by a factormd(np
i
, np′

i

) that
considers the alignment of the surface normalsnp

i
and np′

i

between the model and the scene reconstruction:md(n1, n2) =
1− ǫcos(n1, n2), 0 < ǫ < 1. The distance is further embedded
into a robust functionρ(x) (a truncated quadratic function) to
suppress the effect of outliers.

As mentioned before, our proposed sampling scheme can
significantly reduce the number of required particles. However,
a small number of particles might not be dense enough to
capture each local peak of the posterior distribution, which
in turn degenerates the optimality of tracking, i.e., the global
minimum is missed. Therefore, our local optimization task is
to find a suitable refinement of each sampled pose vectorx(i)

t

to minimize the distance termD. In other words, we move
these particles onto their adjacent local peaks of the posterior
distribution. Our local optimization method is based on the
well-known iterative closest points (ICP) concept [38], which
can coarsely align a model with scene points in an iterative
manner.
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While the original version of the ICP algorithm is only
designed for rigid models, we introduced an articulated exten-
sion calledsimulated physical force/moment based registration
algorithm [25] to deal with articulated 3D human model and
scene fitting. Although this method is similar to the tracking
method proposed in [11], there are several differences: our
distance function is different as it uses a modulation term to
account for the surface alignment and a robust function to
get rid of the outliers; furthermore, we propose a simple and
efficient hierarchical model pose updating scheme instead of
recursively solving a set of dynamics equations.

Suppose a displacement between a scene point and its
closest point on the model creates a simulated physical force.
This force generates two effects on the model: translational
velocity and angular moment to pull/rotate the model into
alignment with the 3D scene point. Fig. 2 illustrates the
force/moment created by the displacement between a scene
point and its closest point on the model.
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Fig. 2. The physical forceF created by the displacementP
′
P ; v and

ω are corresponding translation and rotation vectors created by the physical
force/moment.

The force can be expressed as:
−→
F = ρ(mF (np

i
, np′

i

)‖pip
′

i‖)
−−→ap

i
p′

i

(32)

Here −−→ap
i
p′

i

is the unit vector pointing to
−−→
pip

′

i; mF (np
i
, np′

i

)
is a modulation factor that accounts for the surface alignment
between the model and the scene:mF (n1, n2) = cos(n1, n2).

The moment is given by:
−→
M =

−→
F ×

−→
L (33)

where
−→
L is the vertical distance from the force

−→
F to the

rotation center. The translation and rotation vectors generated
are proportional to the physical force/moment:

−→v = ρ
−→
F (34)

−→ω = λ
−→
M (35)

whereρ andλ are small coefficients.
As in the ICP, we iteratively compute the closest points and

then update the model pose according to the estimated trans-
form. During each iteration step, the displacements between
all 3D scene points and the model are calculated, and all forces
and moments are summed up, resulting in a translation and a
rotation vector to align the model with the 3D scene points:

(δtx, δtx, δtz)
T =

∑

i

−→vi =
∑

i

ρ
−→
Fi (36)

(δθx, δθx, δθz)
T =

∑

i

−→ωi =
∑

i

λ
−→
Mi (37)

Here
−→
Fi and

−→
Mi are the simulated physical force and moment

created by the scene pointpi. With enough iterations, the
misalignment between the model and the 3D scene points will
be minimized, and the overall physical force/moment will be
balanced, indicating convergence.

Given a set of articulated cylinder model parts, we start
with assigning each scene point to its closest model part.
However, instead of applying the above method to each body
part independently, we adopt a hierarchical approach from our
earlier work [25] for applying the transform to the human
model, which is based on the following intuition: Suppose a
physical force is applied to the right lower arm of the model;
this force will not only create the angular moment for the right
lower arm to rotate around the elbow, but will also contribute
to the right upper arm’s rotation about the shoulder, as wellas
the global rotation and translation of the torso. Our hierarchical
updating approach is consistent with this observation. The
human model will be treated as a hierarchical tree with its
root at the torso, as illustrated in Fig. 3.
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Fig. 3. Human model hierarchy tree.

When estimating the transform associated with a
certain body part, the physical forces applied to all
body parts in its group will be integrated. For example,
when calculating the global translation and rotation
(δt0x, δt0y, δt0z, δθ0x, δθ0y, δθ0z)

T , the forces applied to
all body parts will be calculated as follows:




δt0x

δt0y

δt0z


 =

∑

j

−→
Fi∈part(j)∑

i

λj0
−→
Fi (38)




δθ0x

δθ0y

δθ0z


 =

∑

j

−→
Mi∈part(j)∑

i

ρj0
−→
Mi (39)

whereλj0 andρj0 (j = 0, 1, ...9) are weights,part(j) denotes
the j model part.

Similarly, when estimating the rotation(δθ1x, δθ1y, δθ1z)
T

of the right upper arm about the right shoulder (there would be
no translation for the right upper arm as defined by its DoF),
the physical forces applied to the right upper arm and right
lower arm will be counted:




δθ1x

δθ1y

δθ1z


 =

−→
Mi∈part(1)∑

i

ρ11
−→
Mi +

−→
Mi∈part(2)∑

i

ρ21
−→
Mi (40)

We further concatenate the transform vectors estimated for
each body part to obtain the pose increment vectorδx =
(δt0x, δt0y, δt0z, δθ0x, δθ0y, δθ0z, δθ1x, δθ1y, δθ1z, δθ2x...)T .
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Obviously the degrees of freedom of each body part are
preserved and the articulated structure of the human model is
maintained implicitly in this updating scheme.

Furthermore, the kinematic constraints and joint angle limits
can be incorporated in this framework automatically. Giventhe
original pose vectorx and the updating vectorδx generated
by our registration algorithm, we can clamp the new pose
vector to avoid the violation of any constraint by the following
inequality:

xlb � x + δx � xub (41)

wherexlb andxub are the lower and upper bounds of the joint
angles.

VI. EXPERIMENTAL RESULTS

We validate the proposed framework using the real human
motion database HumanEva [39]. This database contains hu-
man motion videos captured by seven synchronized digital
cameras with a resolution of640 × 480 pixels surrounding
the scene. The ground truth of the human motion is also
provided. We show results for three motion sequences here,
namely walking, jogging, and boxing.

The size of training and test sets in terms of frames for
each sequence are summarized in Table. I. In the training
phase, the ground truth of the training set is used as input
into our algorithm, and we output the partitions of all the
Voronoi regions with the associated local projection basis. The
input motion data are 27D while our algorithm learns a low-
dimensional 3D representation.

TABLE I
DATASETS USED IN OUR EXPERIMENTS.

Motion Training size Testing size
Walking 100 frames 433 frames
Jogging 100 frames 393 frames
Boxing 100 frames 377 frames

As mentioned in Section IV, we select the number of
Voronoi regionsM according to the criterion that ensures the
average reconstruction error for the training data is belowsome
thresholdδ. The results for different values ofM are shown
in Fig. 4. It can be observed that atM = 20 the average
reconstruction error is already quite low.

In the tracking phase, the inputs are synchronized frames
from each of the 7 views. The 3D human surface recon-
struction points as well as the corresponding surface normals
are computed via the method described in Section III. This
reconstruction is then input into our tracking algorithm. The
output of the algorithm is the estimated body pose, i.e., global
position, orientation and joint angles of our human model.

Some examples of tracking results are shown in Fig. 5.
It can be observed that the estimated human pose closely
matches the ground truth.

Fig. 6 compares the estimated joint angles with the ground
truth for all frames in the three sequences. Despite the obvious
differences in motion regularity, the estimated joint angles
accurately follow the ground truth data.
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Fig. 4. Average reconstruction error vs. number of Voronoi regions.

Fig. 5. Examples of the tracking results for a frame from each motion
sequence. The top row shows one of the captured views; the bottom row
shows the corresponding tracking results. The estimated human pose is shown
in green, the ground truth pose in red.

Fig. 7 shows the root mean squared error (RMSE) of joint
angles and joint positions averaged over all frames of each
sequence. The increase of errors in the jogging and boxing
sequences is mainly due to the more difficult poses – in
those sequences, the arms are sometimes closely coupled with
the torso, which makes the reconstruction more noisy and
introduces more tracking errors.
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Fig. 7. Average RMSE of joint angle and position for each sequence.

We also investigate the influence of the number of Voronoi
regions on tracking performance by varying the value ofM
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(a) Left elbow, walking
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(b) Left knee, jogging
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(c) Right shoulder, boxing

Fig. 6. Comparison between estimated joint angles and ground truth.

from 5 to 80. The result is shown in Fig. 8. As expected,
the average RMSE decreases with increasingM – when more
regions are used, the underlying distribution of human motion
statistics is more accurately approximated, which reducesthe
tracking errors. For smallM , the error reduction is large, but
beyond M = 20 the curves flatten and the gains become
insignificant. A good choice ofM seems to be in the range
of 10 to 20.
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Fig. 8. Average RMSE vs. number of Voronoi regions.

VII. C OMPARISONS ANDDISCUSSIONS

In this section, we compare the performance of our algo-
rithm in terms of tracking accuracy, robustness, and efficiency
with a deterministic image force-based method as well as a
stochastic sampling based method (particle filter). The rea-
son for selecting these two methods for comparison is that
they are state-of-the-art methods in their categories. Thetwo
methods are implemented on the same MATLAB platform
and evaluated using the same motion sequences (walking,
jogging and boxing) as our hybrid method; likewise, the
system inputs are the same 3D reconstructions as our method.
The implementation details of the different methods are as
follows:

• Our proposed hybrid tracking method with40 particles
andM = 20. Sampling is performed on the reduced low-
dimensional space (3D).

• An image force/ICP based method is similar to [11] (i.e.,
local optimization based method).

• A particle filter based tracking algorithm is similar to
[14], [15]. Sampling is performed in the original high-
dimensional space (33D). The likelihood function is
defined according to Eq. (29).1000 particles are used.

The results are shown in Fig. 9, where we compare the
RMSE of the joint positions estimated by different methods
on the test sequences. It is clear that our hybrid method
consistently achieves higher tracking accuracy throughout all
test sequences, while the image force based method and
particle filter based method generally have higher errors. The
image force based method performs well in easy cases such
as walking; however, in cases where the body parts have
sharp joint angles, e.g., jogging and boxing, it gives unreliable
results. For the particle filter based method,1000 particles are
still not adequate to track the mode of the posterior density,
which leads to large errors. To achieve good results, many
more particles would be required for this method, perhaps104.
In contrast, our method takes the advantages of both sampling
and local optimization to approximate the MAP while using
fewer particles.

In terms of tracking robustness, our hybrid method and
the particle filter based algorithm track the entire sequences
successfully, while the image force based algorithm quickly
loses track in the boxing and jogging sequences. This is mainly
due to the issue of error accumulation, which is a theoretic
limitation of the deterministic searching method. Fortunately,
the usage of sampling in our method successfully eliminates
this effect.

The comparisons of tracking efficiency are summarized in
Table II. The particle filter based method is very slow in prac-
tice due to the large number of particles, and still its tracking
accuracy is only mediocre. The image force based method is
fast, but usually gives unreliable results, e.g., trackingis lost
in the jogging and boxing sequences. Our method achieves
a good compromise between both efficiency and accuracy,
thanks to the scheme of sampling in the low-dimensional space
and the combination of both sampling and optimization. The
only limitation is the need for explicit training with similar
motion patterns.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 8, AUGUST 2008 9

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

Frame

R
oo

t m
ea

n 
sq

ua
re

d 
er

ro
r 

(m
m

)

 

 
Hybrid
Image force
Particle filter

(a) Walking
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(b) Jogging
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(c) Boxing

Fig. 9. RMSE comparison of the joint positions.

TABLE II
SUMMARY OF THE TRACKING PERFORMANCE OF DIFFERENT METHODS.

Motion Walking Jogging Boxing
Hybrid 40 40 40

No. of particles Image force 1 1 1
Particle filter 1000 1000 1000

Hybrid 15 14 17
Time per frame (s) Image force 3 2 2

Particle filter 250 256 271
Hybrid 8.57 16.77 30.75

RMSE (mm) Image force 13.56 666.56 587.75
Particle filter 32.45 48.82 137.69

VIII. C ONCLUSIONS

Tracking full body human motion is a challenging task given
its high dimensionality. Current tracking methods suffer from
either a robustness problem or inefficiency. In this paper we
proposed a novel tracking framework which achieves a good
compromise between accuracy, robustness and efficiency. Prior
information about human motion statistics is encoded into
a compact representation by a subspace learning algorithm
(VQPCA), which performs sampling in a low-dimensional
space, thus reducing the number of particles. We also in-
troduced a sample-and-refine framework, which combines
the concept of both particle filtering and simulated physical
force based registration. This new framework further improves
tracking robustness and accuracy.

Quantitative experimental results on several real motion
sequences show the high accuracy achieved by our method,
while comparisons demonstrate the robustness of our method
as well as a much higher sampling efficiency compared to
other methods. A limitation is that our method is not able to
deal with unfamiliar motions since a training set is always
needed.
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