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A Hybrid Framework
for 3D Human Motion Tracking

Bingbing Ni, Ashraf Ali Kassim, Stefan Winkler

Abstract—In this paper, we present a hybrid framework for ar-  as searching for the best fit between the projected model and
ticulated 3D human motion tracking from multiple synchronized the image contours.
cameras with potential uses in surveillance systems. Although Yamamoto et al. [7] carry out tracking by estimating the

the recovery of 3D motion provides richer information for event . t of the bod tor bet tw .
understanding, existing methods based on either deterministic !ncremen of thé body posé vecior béiween wo successive

search or stochastic sampling lack robustness or efficiency. images. They obtain the pose vector increment by solving a
We therefore propose a hybrid sample-and-refine framework set of linear equations, which relate the image flow estithate
that combines both stochastic sampling and deterministic op- from each view to the motion parameters of the articulated
imzaton to schieve  goad compromie betveen SfISency oyect. Sregler and Malk 5] model the 3D huran moce
compact low-dimensional represerl?tation of the motion statistics. by tW'StS_ and_ exponential maps to perform a local search _for
Sampling in a low-dimensional space is implemented during POse estimation. Kehl and Gool [9] propose a method which
tracking, which reduces the number of particles drastically. takes reconstructed human voxel data as system input, and

We also incorporate a local optimization method based on they develop a stochastic meta descent (SMD) optimization
simulated physical force/moment into our framework, which algorithm to perform human motion tracking.

further improves the optimality of the tracking. Given the human model and the observed scenes, e.g., image
Experimental results on several real human motion sequences .9, 9

show the accuracy and robustness of our method, which also has €ontours or 3D reconstructions, the tracking problem could
a higher sampling efficiency than most particle filtering based also be formulated as a registration problem. Delamarre and
methods. Faugeras [10] propose a method which creates forces between
Index Terms—Articulated 3D human motion tracking, particle ~ the 3D human model and the detected image contours of the
filter, vector quantization principal component analysis, simu- Mmoving person to align them. They also apply this concept
lated physical force/moment directly to the 3D domain [11], where the physical forces
are generated between the human model and the densely
reconstructed 3D points of the scene. The human pose vector
is updated by recursively solving a set of dynamics equation
ULTIPLE view based, marker-less articulated human Kakadiaris and Metaxas [12] develop a similar framework
motion tracking has attracted a growing interest ifor tracking the motion of human body parts from one or
recent years, primarily because of a large number of patentmultiple cameras based on information extracted from the
applications such as motion capture, human computer mter@ccluding contours. Tracking is based on applying forces
tion, virtual reality, smart surveillance systems etc. ldwer, generated by the displacement of the occluding contours and
most existing systems track the target as 2D blobs, frolfde model parts. They also adopt an extended Kalman filter
which only coarse behavior information can be extractegl, e.(EKF) to predict the motion between consecutive framesirThe
walking, running, etc. Other systems such as [1]-[3] use a Znethod is capable of auto-selecting a view point which gives
image analysis approach to detect certain events, e.d&insha the most important tracking information.
hands, falling down, fighting. Additional tracking infortien ~ For many of the systems cited above, tracking robustness
such as articulated 3D motion, which is investigated in thrfémains an issue since global optima are not guaranteed by
paper, can help to obtain a more detailed understandingtbese gradient-based or force-based optimization preesdu
human actions and interactions. However, due to the hi§ch methods may easily be trapped in local minima for a
dimensionality of human body motion, the 3D tracking prodong motion sequence due to error accumulation [7] and are
lem is inherently difficult. A variety of approaches have heesensitive to image noise, foreground segmentation ersets,
proposed — see [4], [5] for comprehensive surveys. occlusion, etc. To address the robustness problem, a large
Gavrilla and Davis [6] are among the first to address tH&mber of algorithms based on stochastic sampling have
problem of tracking articulated 3D human motion by multipl@een proposed, including particle filters [13]-[16] ancatedi
synchronized images. They project a kinematic 3D hum&impling-based approaches such as unscented Kalman filter

model onto each image plane and define the tracking problékd], [18], belief propagation [19], Markov network [20]cet
These sampling-based techniques provide a promising prob-
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like human motion tracking, a large number of particles aren additional contribution of our work is the time series
needed, which is impractical and makes the evaluation of thetension of vector quantization principal component gsial
likelihood function very time-consuming. (VQPCA) [24] to model the statistics of human motion in a
There exist some methods which improve the classicabmpact way. Combined with our modified particle filter, this
particle filter method in terms of computational efficiencysignificantly improves the sampling efficiency.
Deutscher et al. [14] propose an annealed particle filter ap-Qualitative and quantitative experimental results shoat th
proach for full body motion tracking. Using a well designedhe proposed framework achieves a good compromise between
simulated annealing strategy, they reduce the number ¢if paaccuracy, robustness and tracking efficiency. The lincitatf
cles from10* to 102. Lee et al. [16] introduce a framework thatour method is the need for a training step, in which motion
integrates analytical inference into the particle filtgrastheme patterns similar to the ones of interest have to be learned by
to reduce the computational load as well as to auto-inzéali the system.
and auto-recover from tracking failure. Han and Huang [19] The paper is organized as follows: Section Il describes
propose a dynamic belief propagation framework that accelour human model. Section Ill outlines the 3D human recon-
ates the articulated tracking algorithm by adaptively ctalg struction method used. Section 1V describes our probaibilis
the search space based on the prediction of human motivadeling of human motion in detail. Section V explains the
dynamics. hybrid tracking framework including the modified particle
Recent success on learning probabilistic models fromfifiering scheme and the proposed local optimization algo-
small training set has made it possible to further improwe thithm. Section VI shows and discusses experimental refarlts
Bayesian tracking of human motion. Following the idea dfeveral human motion sequences, and Section VII compares
statistical modeling of images for texture synthesis, Sidgdh the performance of our framework with two other methods.
et al. [21] describe an approach that models the appeardncé&ection VIl concludes the paper.
articulated 3D objects into a linear subspace via weightad p
. . ; . 1. 3D HUMAN MODEL
cipal component analysis (PCA). This generative appearanc ] o )
model improves the performance of their particle filter kr.ac ~ FOr @ computationally efficient representation of the human
ing framework. Nonlinear dimensionality reduction tecqugs P0dy, we use a simple cylinder model similar to [27], which
such as locally linear embedding (LLE) are also exploited #§ Shown in Fig. 1. The torso can be regarded as a degenerate
model the dynamic appearance of human motion [22]. Giverfylinder since it has an elliptical 'cross—sectlor?. For 'epah .
training database of human motion capture data, the statis€*Cept the torso, a local coordinate frame is defined with
of human motion dynamics can be modeled directly. Gdipe origin at the base of the cylmder. These origins also
et al. [15] present a method that integrates prior stasistiCorrespond to the center of rotation of each body part. The
information about the pose configurations into the genef@Pbal coordinate system originates at the center of theotor
model of particle filter and therefore reduce the number g€ body parts and corresponding parameters are indexed fro
particles required. Sidenbladh et al. [23] further propoaseO to 9.
method that represents the implicit empirical distribotiof
fixed length motion sequences data in a low dimensional space
by PCA. Therefore tracking is equivalent to searching thet be
matching sequence example in the training database.
In our work, the reconstructed human surface points and
normals from multi-view images are analyzed to enable iden-
tification of the human pose in each frame. Prior informa-
tion is based on a small set of training samples of motion
capture data. Our approach is significantly different from
those presented in [15], [23]. Instead of modeling the low
dimensional subspace of the fixed length motion segmenis [23
or learning the probability distribution of human motiontire
original high-dimensional space [15], the proposed athori Fig. 1. 3D human model.
attempts to directly model the pose configuration stafistic
in a lower-dimensional space using a method from [24] for Human kinematic knowledge is employed as a prior to
dimensionality reduction. Due to this compact repres@ntat define the degrees of freedom (DoF) for our human model.
our stochastic sampling can be conducted in a much low&e incorporate 25 DoF: 3 DoF for upper arms, legs and
dimensional space resulting in a much smaller number loéad (rotating about their X, Y and Z axes), 1 DoF for
required particles compared to [15]. lower arms and legs (they are only allowed to rotate about
The method proposed in this paper is essentially a hybtigeir X axes), and 6 DoF for the torso (global translation
tracking framework, which combines stochastic sampling uand rotation). With these definitions, the entire 3D pose
ing a particle filter with a deterministic searching algomit of the body is determined by a 25D pose vector =
based on simulated physical force/moment based 3D regﬂsh,toy,t()z,HOx,Goy,002,01,,“913,,912,02%...)T, which con-
tration [25]. This sample-and-refine strategy [26] helps uains the joint angles of shoulders, elbows, hips, and knees
achieve more efficient sampling and more accurate trackinmus the global position and orientation of the torso.

(DOF1: 841,8y1,621)
1 Zz

X Y Y (DoF2:6,,)

(DOFO: t,0,t,0,t20,8x0,8y0,820)




IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,OL. 18, NO. 8, AUGUST 2008 3

To further constrain this high-dimensional solution spase basic idea of VQPCA is to first partition the data space,
well as to eliminate the ambiguity during tracking, two tgpein this case the motion space, into disjoint Voronoi regions
of motion constraints are imposed: using vector quantization and then perform local PCA about

1) Kinematic constraints:The connectivity between adja-€ach cluster center. This technique is suitable for prdistbi

cent body parts as well as the length constancy of tfieodeling of human motion, where the whole motion sequence
body parts are enforced through kinematic constraini§. partitioned into state{s|s € (qi,q2,.-.qm)}, all pose
Each body part is 0n|y allowed to move according to it¥ectorsxy, Xo, ...X are considered as observations of these
DoF (e.g., the lower arms are only allowed to rotate abogtates, and the transition probabilities between stagisins
their X axes). are also defined. In VQPCA, each state naturally corresponds

2) Joint angle limits: For real human motion, the jointto @ Voronoi region, and thus local PCA can be performed

ang|es between adjacent body parts are limited toVﬁthin each region, given that its statistical distributican
certain range (e.g., the elbow can only rotate by 13B approximated by a single Gaussian distribution. In feral
degrees around its X axis). This constraint further reducgt@te transition probabilities are modeled using hidderkivla
the solution space. models (HMM).

In Section V we show how our simulated physical W_e use an expectatiqn-maximizatiqn (EM) [35] framework
force/moment based local optimization algorithm automafi© Simultaneously partition the motion data, perform the

cally incorporates the above constraints. subspace learning and estimate the transition probalkilds
follows:
I1l. 3D RECONSTRUCTION OF THEHUMAN BODY 1) Initialization:

All training data X, Xs,...X7 are partitioned intoM
\Voronoi regionsRy, Rs, ...Rys, which correspond ta\/
statesqi, go, ...qas Of human motion. Each regiom®;

The inputs to our tracking framework are the sparsely re-
constructed human surface points and surface normalshwhic
can be obtained via a standard 3D reconstruction algorithm S
given multiple synchronized images and camera calibration is modeled by_ a center;, which is random_ly selected
parameters. Segmented human silhouettes can be computedfr_Om the "?'”'”_9 _df_it_a’. and a x n covarlance ma-
by the foreground detection method [28] provided with the tr,'x Zi’_ Wh',Ch is initialized to be |d(%nt|ty;(7}) is the
background statistics. d!mensmnallw of the pose vectc_xt. e’,.e’ aren

We adopt the well-known visual hull method as described in ~ €ig9envectors ofx;; the (f;)rSt m(i)e|gen\./ectors.compose
[29], [30] to reconstruct the 3D scene points as well as their the linear basisP; = (e;",...e.), which projects the
surface normal vectors. These surface reconstructiontpoin  °riginal n-dimensional vectorx; to its m-dimensional
are obtained by intersecting the viewing cones from each Subspace:. A; = P, z‘TEiZ_Di is the associated covariance
view, and their corresponding normals are given by the cross Matrix in the m-dimensional space. As in HMM, the
product between the viewing lines and the tangent to theémag ~ State transition probabilitiega;; |i,j = 1,2,...M} are

silhouette. initialized to be equal, e.gl/M?2. The choice ofM is
important in the training phase — ¥/ is too small, the
IV. PROBABILISTIC MODEL OF HUMAN MOTION underlying non-Gaussian distribution would not be well

approximated; ifM is too large, there over-fitting could

) : , occur. Therefore, we try out several different values of
temporal order, our goal is to model the low-dimensional . and choose the one that still produces a reasonably
statistical representation of the spatial-temporal $tmec of low average reconstruction error on the training data.
the human motion. PCA [31] is a very popular techniquez) Expectation:

to deal with this dimensionality reduction problem by pro- ° Ag iy the HMM, the forward probabilitiega,(j)[j =
viding a sequence of best linear approximations to a given 1,2,..M} and backward probabilities{3,(j)|; =
high-dimensional dataset. However, the human motionsstati 1,2,..M} are recursively updated as follows:

tics are nonlinear and multimodal, which violates the basic

Given a sequence of training motion data Xz, ... X7 in

PCA assumption of global linearity. Some manifold learning a(j) = p(Xiu, st = q;|N) 1)
techniques have been developed to deal with the nonlinear M
dimensionality reduction problems (e.g., LLE [32], Lapéat = bj(x) Zat_l(i)aij (2)
eigenmap [33], ISOMAP [34]), but these involve the use of the i=1
original high-dimensional datasets. Therefore they amblm a1(j) = mibj(x1) (©))
to deal with novel inputs and not ready for applications such Bi(i) = p(Xesrrlse = i, \) 4)
as tracking. M

In this work, we adopt the technique of VQPCA [24] — a;ib; (X ; 5
by developing a time series extension of the basic VQPCA [; b3 (1) e ()] ©)
learning algorithm to model human motion. VQPCA is a Br(i) = 1 (6)
non-parametric, nonlinear dimensionality reduction tegbe,
which is suitable for modeling nonlinear data structurés li Here b;(x;) is the likelihood of being in state; given

human motion data and also provides the orthogonal pro- the observationx; at time instantt. In our work, we
jection basis flexible enough to handle novel inputs. The assume it to be a single Gaussian density, bgx;) ~
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o(r;,%;). m; is the initial probability of statey;, which the reconstruction distance, then project it to its locaédr
is assumed to be equal for all states,, denotes the subspace:

observation sequence of motion vectoq, Xa, ...X;). A T (i) @ T
represents the parameters of the HMM model, de= 2= (31:22,--2m)" = (€17 - (X =1y), ..., &) - (X =14))" (18)

(aij, mj, 05, 85l4,5 = 1,2,...M). and reconstruction is done as:
The probability of being in statg at time instantt is m
given by: o X=ri+>» ze) (19)
() = 240)B49) ™) =
) p(xl:T|)\)

Here p(x..z|A) is the probability of observing the se- V. HYBRID HUMAN MOTION TRACKING FRAMEWORK

quencexy, Xs, ... given \, which can be considered aA- Modified Particle Filtering

normalization constant. In the Bayesian framework, the task of human motion
3) Maximization: tracking can be formulated as inferring maximum a posterior
All training data are partitioned intoM regions (MAP) of the joint probabilityp(x,, s;|I1.;) given the image
R1, R, ...Ry according to their reconstruction distanc@bservation sequencé.r = ([, Is,...I;). Provided with
d(X¢,15): the previous estimation of the densipfx;—1,si—1|l1.4—1),
o inferring the posterior density of the current frame is éiere
R = {X¢|d(Xs,r:) < d(Xe,15);V5 # i} (8) expressed as:
_ S ()12
d(X¢,ri) = [Ixe—ri— Z zi€;" | 9) p(X¢, 8¢ 11:) = Kp(Le|Xe, 8¢) X
j=1
= (X, —r)TTTE (x — 1)) (20) /p(Xn St Xe—1, 8t—1, L1:4-1) X
Here T; is composed of the trailing eigenvectors 9, p(Xt—1,8t-1|11:4-1)dX¢—1dsi -1 (20)
; _ (a(®) (i . L . -
e, Ti = (€,,1, € ) _ _ whererx is a normalization constant(I;|x;, s;) is a likelihood
The generalized centroid, of _the_ regionR; is updated term which measures the probability of observipgjiven the
via minimizing the cost function: motion states, and pose vectok,. The detailed definition

1 e of the likelihood function will be given in Section V-B.
Mi = argmin - Z (e =13)" TET} (% —13)  (11) p(Xe, S¢[Xe—1, 5¢-1, I14—1) models the transition probability of

' x€ER: the motion dynamics.
There exist several solutions to the above equation; ac-Although it would be impossible to develop an analytical
cording to [24], a convenient choice is: expression of the posterior density, we can approximate it
1 by a set of weighted pose and state vectors cabedicles
i =% = — Z X4 (12) Each particlei is denoted ag(s\”,x{” w"), representing
Ni X ER; the motion state, pose vector and the associated likelihood

and weight. In a particle filter scheme, these weighted padicle

1 - are propagated throughout consecutive frames via seqlienti
Xy = A Z (Xe = 1i)(x; — 1) (13) importance sampling [36]. We define the importance density
" xeeRs as:

The projection matrixP; is then updated by then

. . . Xty Se|Xe—1,Se—1, L1:6—1) = P(Xey S| Xe—1, Se—1, [1:0—
eigenvectors corresponding to the largest eigenvalues 906, SePa—1; 811, Dieo1) = PO, SeXi1, 811, Trie-1)

; fing (21)
of the new covariance matrix;: Further factorization of this expression gives:
P= (e, . e 14
St ) (14) P(Xe, St Xe—1, S¢—1, L1:4—1) =
Finally, the transition probabilities are updated as: p(se|Xe—1, 801, T1:0-1) X p(Xe|se, Xe—1, 861, [14-1) (22)
&(1,7) = p(st = qi, Se+1 = g;[Xi.7, A)  (15) The second term can be simplified as:
Natgibs (X .
= 0elauh e DB ) gy iyl xe st Bat) = p0Slse X 1) (29)
P(X1.7|\)
ZT—l &(i, 5) if we assume that the transition probability is independ#nt
a;; = % (17) the observation sequence. Also, assuming first a order Marko
D=1 (d) chain, the first term is trivially equal to the state tramsiti

The above steps are iterated until there is no significapobability, i.e.,
change in the average reconstruction error. We then get a se
. . . . X_,_,I»_: =qilsi—1 =¢q;) = a;; (24
of Voronoi regions(R;, Rs, ...Ry) and their corresponding pt(st‘ et st Dan) = plse = gjlsin = 4i) = ai (24)
linear subspace bas{$, P, ...Py;). To encode a novel input  Two important features distinguish our sampling and fil-
X, We assign it to its corresponding regidty according to tering scheme from the general particle filter algorithm.
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First, special treatment is adopted when sampling from (q) Reconstrucxf) in the original dimension space, i.e.,
p(X¢|s¢, Xe—1, st—1) to achieve our idea of sampling in a low- m

dimensional space. For each selected particlee first locally =r 4+ Z 2 (28)
project it into the linear subspace of its Voronoi regiéy
with (rj,Ej,Pj = (egj),ng),... (])) AJ PJTEJPJ) (for

: A . . 4) Refinement:
notational simplicity, we ignore the region indgxn the rest ) Refineme

of the paper), i.e., For each _particlési = qC,Xt ) perform the refinement
b%/_) our simulated physical force/moment algorithm on
2, = (e () —1), & (2 =1, e () 1)) T (@28) X
5) Weighting:
Then new samples are drawn from the low-dimensional Evaluate the likelihood weight of each particle according
space according to the Gaussian dengify ~ (2", A), to the likelihood functiono!” o p(Z;|x\, s{”) proposed

in Section V-B.
Now a new set of particles which approximate
the posterior density of timet are obtained, i.e.,

Wherez( " is am-dimensional vecto(m < n) in the linear
subspace of Voronoi regio®. This sampling scheme dras-
tically reduces the number of required particles accordong

. . . i i) (4)
the theory of particle filters [37], i.e., based on a lower fbu {Sg ),Xé ), wi” i =1,2..N}. Using the idea of sampling
of the number of required particled? > D,,;,/ad, where N in the linear subspace we significantly reduce the number
is the number of particles required,is the dimension of the of particles required.

sampling spacel),,.;,,, « are constants and < 1. Obviously,

for a low dimensiond, much fewer samples are needed. B. Local Optimization Using Simulated Physical
Later, to evaluate the likelihood, each low-dimensionahsa Force/Moment

ple z") is synthesized into the original dimension according Given a set of 3D reconstruction points with surface normals

to its Voronoi regionk, i.e., for each frame and a 3D human model composed of a set of

connected body parts, our likelihood function is designgd a

=r+ Z zt] (26) p(L|Xe, s¢) = e P/ (29)

where k is some normalization constant, is the variance.
The second distinguishing feature is our sample-and-refimae distance ternd is the average distance between 3D scene
strategy, where each new particle is optimized to its nearpyints p, and the corresponding points on the 3D mogplel
local peak of the posterior density after sampling by our

proposed simulated physical force/moment based optimiza- D= %Zd(pi,p;) (30)
tion scheme (see Section V-B below). This strategy further i
imrpoves the performance of our tracking algorithm. S is the number of scene points, and

The overall framework of our modified particle filter can be 2
summarized as follows: d(p;,p}) = p ((Tﬂd(npiy npg)llpipﬂ\) > (31)

1) Objective: .
From a set of part|c|esg5t 1an )1,%( )171' = 1,2..N} Here|p,p;|| denotes the Euclidean distance between a scene
at time stept — 1, construct a new sample setpoint p, and its corresponding point (i.e., the closest) on
(9 x9 W ;= 1,2. N} to represent the posteriorthe modelp;. It is modulated by a factorn,(n,,, ny:) that
density of the current frame. considers the alignment of the surface normajs and Np!
2) Selection: Randomly draw a samplés; ’1, /(')) ~ between the model and the scene reconstruoﬂn;ﬁnl,ng) =
{Sf 17X§ )1’%( )1, i = 1,2...N'}, according to the Welghts —ecos(ng,Ny),0 < e < 1. The distance is furtber embedded
{w i=1,2..N}: into a robust functiorp(x) (e truncated quadratic function) to
t—1 suppress the effect of outliers.
3) Sampling: . .
For each parUcIQs X (7)) As mentioned before, our proposed sampling scheme can
t—1 o significantly reduce the number of required particles. Hawe
() Draw a new state according to the state transitigi small number of particles might not be dense enough to
probability, i.e.,s{” ~ {ar1,ars,.arar}. The new capture each local peak of the posterior distribution, Wwhic
state is denoted as;” = g¢, which corresponds 1o in turn degenerates the optimality of tracking, i.e., thebgl
Voronoi regionR with (r, 3, P = (€1, €,...6,), A = minimum is missed. Therefore, our local optimization task i
PTEP). to find a suitable refinement of each sampled pose vectbr
(b) Projectx;"”; into the linear subspace of regidh i.e., to minimize the distance ternb. In other words, we move
_ , _ these particles onto their adjacent local peaks of the poste
20 = (e (X =), & (XD =), ... e (X, —r))T distribution. Our local optimization method is based on the
(27) well-known iterative closest points (ICP) concept [38],igvh
(c) Draw a new Iow-dlmensmnal sample according to thean coarsely align a model with scene points in an iterative
Gaussian density i. ezt ~ ¢(zt 1 A); manner.
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While the original version of the ICP algorithm is onIyHerel?; andZ\‘fi are the simulated physical force and moment
designed for rigid models, we introduced an articulate@émxt created by the scene poipt. With enough iterations, the
sion calledsimulated physical force/moment based registratiomisalignment between the model and the 3D scene points will
algorithm [25] to deal with articulated 3D human model ande minimized, and the overall physical force/moment will be
scene fitting. Although this method is similar to the trackinbalanced, indicating convergence.
method proposed in [11], there are several differences: ourGiven a set of articulated cylinder model parts, we start
distance function is different as it uses a modulation tesm Wwith assigning each scene point to its closest model part.
account for the surface alignment and a robust function Kowever, instead of applying the above method to each body
get rid of the outliers; furthermore, we propose a simple anmhrt independently, we adopt a hierarchical approach from o
efficient hierarchical model pose updating scheme instéadearlier work [25] for applying the transform to the human
recursively solving a set of dynamics equations. model, which is based on the following intuition: Suppose a

Suppose a displacement between a scene point andpitysical force is applied to the right lower arm of the model;
closest point on the model creates a simulated physicaé forthis force will not only create the angular moment for thétig
This force generates two effects on the model: translatiorlawer arm to rotate around the elbow, but will also contribut
velocity and angular moment to pull/rotate the model inttm the right upper arm'’s rotation about the shoulder, as al|
alignment with the 3D scene point. Fig. 2 illustrates ththe global rotation and translation of the torso. Our hignaral
force/moment created by the displacement between a scepeating approach is consistent with this observation. The
point and its closest point on the model. human model will be treated as a hierarchical tree with its

root at the torso, as illustrated in Fig. 3.

Left Right Left Right
Upper Upper Head Upper Upper
Arm Arm Leg Leg

Left Right Left Right
Lower Lower Lower Lower
Arm Arm Leg Leg

Fig. 2. The physical force# created by the displacemet’ P; v and

w are corresponding translation and rotation vectors cdelgethe physical Fig. 3. Human model hierarchy tree

force/moment.
The force can be expressed as: When estimating the tran_sform associate_d with a
— certain body part, the physical forces applied to all
F = p(mr(np, Np)11P:; 1) ap,p: (32) pody parts in its group will be integrated. For example,

 — 1 i 1
Herea?,)g is the unit vector pointing t@,pl; m(np,,Np) when calculating the global translation and rotation

. .

is a modulation factor that accounts for the surface aligrtme(&o'”’&03”&02’5903”590”’59”) , the forges applied to
} all body parts will be calculated as follows:

between the model and the scenei(ny, ny) = cos(ny, nNy).

The moment is given by: Otoy Fiepart(j) .
M=FxTL (33) z@y = 2 > f (38)
0z J ?
where T is the vertical distance from the forcg to the — ,
. : . 0602 M;epart(j)
rotation center. The translation and rotation vectors geed o 7
) . 080y = E E pioM; (39)
are proportional to the physical force/moment: 50, . ,
z 3
— —
vo= pF (34) where) o andp,o (j =0, 1,...9) are weightspart(j) denotes
j Pj

T o= M (35) thej model part.
wherep and X are small coefficients. Similgrly, when estimating the'rotatio(rzﬁelz,691y,6912)T
As in the ICP, we iteratively compute the closest points arfd the right upper arm about the right shoulder (there woeld b
then update the model pose according to the estimated trafig-translation for the right upper arm as defined by its DoF),
form. During each iteration step, the displacements batwel® Physical forces applied to the right upper arm and right
all 3D scene points and the model are calculated, and atgord®Wer arm will be counted:

and moments are summed up, resulting in a translation and a/ §6,, M;epart(1) N M; epart(2) N
rotation vector to align the model with the 3D scene points: 06, | = Z p11M; + Z p21M;  (40)
601, i i

(8t 0to,6t)" = S T = pF, (36)

i i We further concatenate the transform vectors estimated for
(805,680,,80.)T = Z@? — Z)\N_’L (37) €ach body part to obtain the pose increment veator=

p Z (8tows Otoy, Otoz, 080z, 660y, 0002, 6614, 601y, 801, 602,...) 7.
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Obviously the degrees of freedom of each body part are
preserved and the articulated structure of the human medel i
maintained implicitly in this updating scheme.

Furthermore, the kinematic constraints and joint anglé&$im
can be incorporated in this framework automatically. Gitresn
original pose vectox and the updating vectarx generated
by our registration algorithm, we can clamp the new pose
vector to avoid the violation of any constraint by the follog
inequality:

IN

w
3]

w

n
3]

N

=
3]

[

o
3]

Average Reconstruction Error [degrees]

Xip = X+ 0X = Xup (41)
- % 5 10 20 40
wherex;;, andx,; are the lower and upper bounds of the joint Value of M
angles.
VI. EXPERIMENTAL RESULTS Fig. 4. Average reconstruction error vs. number of Vorongioes.

We validate the proposed framework using the real hume -
motion database HumanEva [39]. This database contains |
man motion videos captured by seven synchronized digit
cameras with a resolution df40 x 480 pixels surrounding
the scene. The ground truth of the human motion is als
provided. We show results for three motion sequences her=

namely walking, jogging, and boxing. L \
The size of training and test sets in terms of frames fc ) ) K RU

each sequence are summarized in Table. I. In the traini ’K \

phase, the ground truth of the training set is used as ing / / { \

into our algorithm, and we output the partitions of all the
Voronoi regions with the associated local projection babiee Fig. 5. Examples of the tracking results for a frame from eachianot

input motion data are 27D while our algorithm learns a lowsequence. The top row shows one of the captured views; thenbabw
dimensional 3D representation. shows the corresponding tracking results. The estimated mpwse is shown
in green, the ground truth pose in red.

TABLE |
DATASETS USED IN OUR EXPERIMENTS

Fig. 7 shows the root mean squared error (RMSE) of joint

Motion | Training size | Testing size angles and joint positions averaged over all frames of each
Walking | 100 frames | 433 frames sequence. The increase of errors in the jogging and boxing
Jogging | 100 frames | 393 frames sequences is mainly due to the more difficult poses — in
Boxing 100 frames | 377 frames q y p

those sequences, the arms are sometimes closely coupled wit
the torso, which makes the reconstruction more noisy and

As mentioned in Section IV, we select the number dftroduces more tracking errors.

Voronoi regionsM according to the criterion that ensures the
average reconstruction error for the training data is belome
thresholds. The results for different values dff are shown

in Fig. 4. It can be observed that &f = 20 the average
reconstruction error is already quite low.

In the tracking phase, the inputs are synchronized frames
from each of the 7 views. The 3D human surface recon-
struction points as well as the corresponding surface nisrma
are computed via the method described in Section Ill. This
reconstruction is then input into our tracking algorithmheT
output of the algorithm is the estimated body pose, i.ehalo
position, orientation and joint angles of our human model.

Some examples of tracking results are shown in Fig. 5.
It can be observed that the estimated human pose closely
matches the ground truth.

Fig. 6 compares the estimated joint angles with the grourd. 7. Average RMSE of joint angle and position for each sege.
truth for all frames in the three sequences. Despite theooisvi
differences in motion regularity, the estimated joint &sgl We also investigate the influence of the number of Voronoi
accurately follow the ground truth data. regions on tracking performance by varying the valuelof

w
o

N
&

N
o

Average RMSE [degrees]/[mm]
= B
o (%2

ol

o

Joint Angle Position
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Tracking results
— — —Ground truth

Joint angle (degree)
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S
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N
a

n
=]

-
o

50 100 150 200 250 300 350 400
Frame

(a) Left elbow, walking

Fig. 6.

from 5 to 80. The result is shown in Fig. 8. As expected,
the average RMSE decreases with increadifhg- when more
regions are used, the underlying distribution of human omoti
statistics is more accurately approximated, which redtices
tracking errors. For small/, the error reduction is large, but
beyond M = 20 the curves flatten and the gains become

10

Tracking results

— — —Ground truth

100

Tracking results

80 — — —Ground truth

60
40
I

207

Joint angle (degree)

5‘0 160 1%0
(b) Left knee, jogging

Comparison between estimated joint angles and grautial t

Frame

200 250 300 350 0 50 100 150 200 250 300 350
Frame

(c) Right shoulder, boxing

« An image force/ICP based method is similar to [11] (i.e.,
local optimization based method).

o A particle filter based tracking algorithm is similar to
[14], [15]. Sampling is performed in the original high-
dimensional space (33D). The likelihood function is
defined according to Eq. (29)000 particles are used.

insignificant. A good choice ofif seems to be in the range

of 10 to 20.
60
—— Walk
—=— Jog
ESO’ —A—Box ||
E
5 40}
]
2
£ 30t
Q
[
‘> 20
(=]
o
(7]
Z 107
¢ 4
o . .
0 510 20 0
Value of M

Fig. 8. Average RMSE vs. number of Voronoi regions.

80

VIl. COMPARISONS ANDDISCUSSIONS

In this section, we compare the performance of our alggue to the issue of error accumulation, which is a theoretic
rithm in terms of tracking accuracy, robustness, and effiie limitation of the deterministic searching method. Fortieha

with a deterministic image force-based method as well asth usage of sampling in our method successfully eliminates
stochastic sampling based method (particle filter). The rgRis effect.

son for selecting these two methods for comparison is thatrpe comparisons of tracking efficiency are summarized in
they are state-of-the-art methods in their categories. thite Taple |1. The particle filter based method is very slow in prac
methods are implemented on the same MATLAB platforfjce due to the large number of particles, and still its tiagk
and evaluated using the same motion sequences (walkiggguracy is only mediocre. The image force based method is
jogging and boxing) as our hybrid method; likewise, theyst put usually gives unreliable results, e.g., trackspst
system inputs are the same 3D reconstructions as our methgdine jogging and boxing sequences. Our method achieves
The implementation details of the different methods are %Sgood Compromise between both efﬁciency and accuracy,

follows:

The results are shown in Fig. 9, where we compare the
RMSE of the joint positions estimated by different methods
on the test sequences. It is clear that our hybrid method
consistently achieves higher tracking accuracy througlatu
test sequences, while the image force based method and
particle filter based method generally have higher errone T
image force based method performs well in easy cases such
as walking; however, in cases where the body parts have
sharp joint angles, e.g., jogging and boxing, it gives uabd
results. For the particle filter based meth®0)0 particles are
still not adequate to track the mode of the posterior density
which leads to large errors. To achieve good results, many
more particles would be required for this method, perhags
In contrast, our method takes the advantages of both sagnplin
and local optimization to approximate the MAP while using
fewer particles.

In terms of tracking robustness, our hybrid method and
the particle filter based algorithm track the entire seqgasnc
successfully, while the image force based algorithm quickl
loses track in the boxing and jogging sequences. This islynain

thanks to the scheme of sampling in the low-dimensionalespac

« Our proposed hybrid tracking method witl) particles and the combination of both sampling and optimization. The
and M = 20. Sampling is performed on the reduced lowenly limitation is the need for explicit training with sinait

dimensional space (3D).

motion patterns.
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Fig. 9. RMSE comparison of the joint positions.

TABLE I
SUMMARY OF THE TRACKING PERFORMANCE OF DIFFERENT METHODS

(4
(5]

Motion Walking | Jogging | Boxing
Hybrid 40 40 40
No. of particles Image force 1 1 1 [6]
Particle filter 1000 1000 1000
Hybrid 15 14 17
Time per frame (s)| Image force 3 2 2
Particle filter 250 256 271 [7]
Hybrid 8.57 16.77 30.75
RMSE (mm) Image force 13.56 666.56 | 587.75
Particle filter | 32.45 48.82 137.69

(8]

VIIl. CONCLUSIONS [l

Tracking full body human motion is a challenging task given
its high dimensionality. Current tracking methods sufiemi [10]
either a robustness problem or inefficiency. In this paper we
proposed a novel tracking framework which achieves a gogad]
compromise between accuracy, robustness and efficierioy. Pr
information about human motion statistics is encoded int?z]
a compact representation by a subspace learning algorithm
(VQPCA), which performs sampling in a low-dimensional
space, thus reducing the number of particles. We also e
troduced a sample-and-refine framework, which combines
the concept of both particle filtering and simulated phylsicél4]
force based registration. This new framework further inpeo
tracking robustness and accuracy.

Quantitative experimental results on several real motigrp]
sequences show the high accuracy achieved by our method,
while comparisons demonstrate the robustness of our method
as well as a much higher sampling efficiency compared (5]
other methods. A limitation is that our method is not able to
deal with unfamiliar motions since a training set is alwayﬁn
needed.
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