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Abstract— We present a perceptual model for hiding a spread-

spectrum watermark of variable amplitude and density in an im-

age. The model takes into account the sensitivity and masking

behavior of the human visual system by means of a local isotropic

contrast measure and a masking model. We compare the inser-

tion of this watermark in luminance images and in the blue chan-

nel of color images. We also evaluate the robustness of such a wa-

termark with respect to its embedding density. Our results show

that this approach facilitates the insertion of a more robust wa-

termark while preserving the visual quality of the original. Fur-

thermore, we demonstrate that the maximum watermark density

generally does not provide the best detection performance.

Keywords— Isotropic contrast, masking model, spread-

spectrum watermark, robustness, density.

I. Introduction

The ease with which images in digital form can be distributed
and reproduced has become a growing concern for their creators,
and protecting authors’ rights has become increasingly impor-
tant. One solution to these problems is digital watermarking,
i.e. the insertion of information into the image data in such a
way that the added information is not visible and yet resistant
to image alterations. A variety of techniques has already been
proposed; an overview of the subject can be found in [8].

That digital watermarks should be invisible prompts the ex-
ploitation of the characteristics of the human visual system
(HVS). In general, this implies a spatial or spectral shaping of
the watermark according to certain HVS (in)sensitivities. How-
ever, this idea has not been pursued vigorously until recently.
Kutter et al. [11] proposed modifying the blue component of the
image proportional to the local luminance. More sophisticated
approaches were presented by Podilchuk and Zeng [17], who
insert a watermark in the DCT domain, or by Delaigle et al.
[4], who consider the masking of band-limited noise in texture
regions and around contours.

In this paper, we propose a new HVS-optimized weighting
function for hiding a spread-spectrum watermark in an image.
Both luminance and blue-channel watermarks are investigated.
We use a weighting function derived from the masking behavior
of the human visual system as well as from the watermark itself.
Our results show that this approach facilitates the insertion of a
more robust watermark in either the luminance image or in the
blue channel while preserving the visual quality of the original.

The paper is organized as follows: Spread-spectrum water-
marking is introduced in Section II. The characteristics of
the human visual system used in our approach are presented
in Section III. Application-specific design choices for our sys-
tem are described in Section IV, and the experiments carried
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out to determine the pertinent model parameters are reported
in Section V. Finally, we evaluate the proposed watermark-
ing schemes with respect to their visibility and robustness and
discuss our results in Section VI.

II. Spread-Spectrum Watermarking

The approach chosen for the digital watermark is based on
spread-spectrum modulation [16,19]. In this section we present
the watermark insertion and detection process [9, 10].

A. Watermark Insertion

A watermarked image Î(x, y) is created by adding a water-
mark w(x, y) to the original image I(x, y):

Î(x, y) = I(x, y) + w(x, y). (1)

The watermark w(x, y) contains an N -bit binary signature
B = {b0, . . . , bN−1}. For each bit i, a two-dimensional modula-
tion function si(x, y) is generated as follows: we start with a set
of pixel positions Si spanning the image. To obtain orthogonali-
ty between the modulation functions, these sets are defined such
that their intersection is empty, i.e. Si ∩ Sj = ∅ ∀i 6= j. This
condition ensures that each pixel of the image is modified by
only one function. The modulation functions are then defined
as follows:

si(x, y) =

{

pi(x, y) if (x, y) ∈ Si,
0 otherwise.

(2)

The functions pi(x, y) are pseudo-random functions. In our
case, they have a bimodal distribution of {−1, 1}, but other
distributions are viable.
The watermark itself is defined as the linear superposition of

N modulated and weighted functions si(x, y):

w(x, y) =

N−1
∑

i=0

(−1)bisi(x, y)α(x, y), (3)

where α(x, y) represents a weighting function, which will be
defined in Section IV.
To gain greater control over the artifacts, we introduce a wa-

termark density D, which defines the fraction of pixels in the
image to be watermarked:

D =
|{
⋃N−1

i=0
Si}|

|{S}| , (4)

where |{·}| is the cardinal of a set, and {S} is the set of all
positions in the image. The spatial probability distribution of
the positions in a set si(x, y) is uniform, meaning that the prob-
ability for a pixel to be part of set Si is D/N .
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B. Watermark Detection

In order to demodulate the information inserted in the image,
the correlation between the watermarked image and the mod-
ulation functions is computed by means of a linear correlator.
Since the statistical properties of an image are not stationary
and the expectation is non-zero, the watermarked image is pre-
processed in order to reduce its variance. This procedure great-
ly improves the performance of the watermarking system. The
detector statistics are given by:

ri =
〈

f(Î), si
〉

, (5)

where f is the pre-processing function, Î is the watermarked
image, and si are the modulation functions.
We employ adaptive watermark prediction based on a Wiener

filter. Wiener filtering is commonly used in image restoration
and denoising, because it exhibits optimal performance when
both image and noise statistics are Gaussian. The coefficients
h0(m,n) of an adaptive Wiener filter of size W×W are defined
as follows [12]:

h0(m,n) =











1
σ2

I
+σ2

w

(

σ2I +
σ2

w

W2

)

if m = n = 0,

1
σ2

I
+σ2

w

σ2
w

W2 if 0 < |m|, |n| < W
2
,

0 otherwise,

(6)

where σ2I is the local variance of the original image and σ
2
w is

the local variance of the watermark.
The watermark variance is computed using an estimate α̃ of

the local watermark weighting function α(x, y). Taking into
account that the watermark is not present at every point due to
the variable embedding density D introduced in Section II-A,
the local estimate of the embedded watermark is given by:

σ̃2w(m,n) =
D

W 2

m+W1
∑

k=m−W1

n+W1
∑

l=n−W1

α̃2(k, l), (7)

where W1 =
W−1
2
.

Under the assumption that the variance of the image is inde-
pendent of the watermark noise, its estimate is given by:

σ̃2I (m,n) = max
{

σ̃2
Î
(m,n)− σ̃2w(m,n), 0

}

, (8)

where σ̃2
Î
(m,n) is an estimate of the local variance of the wa-

termarked image:

σ̃2
Î
(m,n) =

1

W 2

m+W1
∑

k=m−W1

n+W1
∑

l=n−W1

(

Î(k, l)− µ̃Î(m,n)
)2
, (9)

and µ̃Î(m,n) is an estimate of the local mean:

µ̃Î(m,n) =
1

W 2

m+W1
∑

k=m−W1

n+W1
∑

l=n−W1

Î(k, l). (10)

The Wiener filter h0 computes an estimate of the original im-
age. In the watermark detection process, the difference between
the watermarked image and this estimated original is used. This
difference can be included directly in the adaptive Wiener filter
as follows:

h(m,n) =











W2−1
σ2

I
+σ2

w

σ2
w

W2 if m = n = 0,

− 1
σ2

I
+σ2

w

σ2
w

W2 if 0 < |m|, |n| < W
2
,

0 otherwise.

(11)

Thus pre-processing consists of a convolution with this filter,
and the detector statistics from Eq. (5) simply become

ri =
〈

h ∗ Î , si
〉

. (12)

The signature bits of the watermark can now be determined
from the signs of ri:

b̃i =

{

1 if ri ≥ 0,
0 if ri < 0.

(13)

III. Model of the Human Visual System

To hide the watermark in an image effectively, it is useful
to exploit certain characteristics of the human visual system.
We focus on the masking phenomenon in this paper, because
it describes interactions between stimuli such as the watermark
and the image. Masking occurs when a stimulus that is visible
by itself cannot be detected due to the presence of another. The
amount of masking depends on the contrast of the masker. The
following two sections discuss a suitable measure of contrast and
a masking model for spread-spectrum watermarking.

A. Contrast

The response of the human visual system depends much less
on the absolute luminance than on the relation of its local vari-
ations to the surrounding luminance. This property is known
as Weber’s law. Contrast is a measure of this relative variation
of luminance. Unfortunately, a common definition of contrast
suitable for all situations does not exist. Mathematically, Weber
contrast can be expressed as:

CW =
∆L

L
. (14)

It is often used for small patches with a luminance offset ∆L on
a uniform background of luminance L. In the case of sinusoids
or other periodic patterns with symmetrical deviations rang-
ing from Lmin to Lmax, which are also very popular in vision
experiments, Michelson contrast is generally used:

CM =
Lmax − Lmin

Lmax + Lmin
. (15)

While these definitions are good predictors of perceived con-
trast for simple stimuli, they fail when stimuli become more
complex [15]. It is evident that they are not appropriate for
measuring contrast in natural images, because a few very bright
or very dark points would determine the contrast of the whole
image. Actually, human contrast sensitivity varies with the lo-

cal average luminance. In order to address these issues, Peli
[14] proposed a local band-limited contrast measure:

CP
j (x, y) =

ψj ∗ I(x, y)
φj ∗ I(x, y)

, (16)

where ψj is a band-pass filter at level j of a filter bank, and φj
is the corresponding low-pass filter. Modifications of this local
band-limited contrast definition have been used in a number
of vision models [2, 13] and are in good agreement with psy-
chophysical experiments on Gabor patches [15].
However, real (symmetric) filters alone are not sufficient for

describing the contrast of complex stimuli such as natural im-
ages. This becomes obvious when CP is computed for sinusoids
with a constant CM : The contrast measured only with real
(symmetric) filters actually oscillates with the same frequency
as the underlying sinusoid [22]. This complicates the establish-
ment of a correspondence between such a local contrast measure
and data from psychophysical experiments.
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To relate a local definition of contrast to the Michelson con-
trast of a sinusoidal grating (i.e. a constant response across the
whole image), the contrast definition must take into account
both the in-phase and the quadrature component [3]. Analyt-
ic filters represent an elegant way to achieve this. However,
general two-dimensional analytic filters are not well-defined be-
cause of the lack of a Hilbert transform in two dimensions [20].
Directional analytic filters pose no difficulties, as long as their
angular support is smaller than π, allowing meaningful oriented
contrast measures to be computed easily [13]. For the applica-
tion at hand, an isotropic contrast measure is required, since a
spread-spectrum watermark exhibits no prominent orientation
itself; however, isotropic analytic filters as such do not exist.
We therefore rely on a method proposed recently by Win-

kler and Vandergheynst [22]. They show how to construct an
isotropic local contrast measure CI from the combined respons-
es of analytic directional band-pass filters ψjk (level j, orienta-
tion k). This isotropic local contrast is defined as follows:

CI
j (x, y) =

√

2
∑

k
|ψjk ∗ I(x, y)|2

φj ∗ I(x, y)
. (17)

The resulting isotropic contrast for level j corresponds to the
square root of the energy sum over all orientations of accord-
ingly band-pass filtered images, normalized by the low-pass (φj)
filtered image. The filters ψjk must be designed such that their
angular support is smaller than π and their energy sum over all
filter orientations is isotropic in the frequency domain. Then the
L2-norm of the numerator is equivalent to what would have been
obtained using an isotropic filter [22]. CI thus behaves as pre-
scribed with respect to sinusoidal gratings (i.e. CI(x, y) ≡ CM

in this case).
Examples of this isotropic contrast applied to the lena im-

age at three different levels are shown in Figure 1. The figures
clearly illustrate that CI exhibits the desired omnidirectional
and phase-independent properties. Its localization depends on
the chosen level. The specific filters used for the contrast com-
putation are discussed in Section IV.

B. Masking

In the context of watermarking it is helpful to think of the
watermark being masked by the original image. Masking ex-
plains why the watermark signal is disturbing in certain regions
of an image while it is hardly noticeable elsewhere.
Masking effects are usually quantified by means of detection

experiments, where the contrast threshold for the detection of
a target stimulus is measured for a range of masker contrasts.
Figure 2(a) shows an example of curves approximating the data
typically resulting from such experiments. The horizontal axis
shows the log of the masker contrast CM , and the vertical axis
the log of the target contrast CT at detection threshold. For
contrast values of the masker larger than CM0 , the detection
threshold grows as a power of the masker contrast. The de-
tection threshold for the target stimulus without any masker is
indicated by CT0 . CM0 depends on the nature of the stimuli, as
we will see in Section V.
Two cases can be distinguished in Figure 2(a). In case A,

there is a gradual transition from the threshold range to the
masking range. Typically this occurs when masker and target
have different orientations or otherwise different characteristics.
For case B, the detection threshold for the target decreases when
the masker contrast is close to CM0 , which implies that the tar-
get is easier to perceive due to the presence of the masker in this
contrast range. This effect is known as facilitation and occurs
mainly when target and masker have very similar properties.

(a) Original (b) Level 0

(c) Level 1 (d) Level 2

Fig. 1. Three levels of isotropic contrast CI
j (x, y) for the lena image.

Masking is generally strongest when the interacting stimuli
have similar characteristics, i.e. similar frequencies, orientations,
and colors. Masking between stimuli from different channels is
weaker [5, 6]. Color masking and interactions between color
and luminance stimuli were investigated by Switkes et al. [21].
Their experiments showed that the overall behavior is similar
to luminance masking.
Because the facilitation effect is usually limited to a rather

small range of masker contrasts, and because in our application
the masker (the image) and the target (the watermark) have
different characteristics, facilitation is neglected here. The most
important effect is masking, i.e. the significant increase of the
target’s visibility threshold with increasing masker contrast CM .
Hence a simplified masking model can be formulated as follows:

CT (CM ) =

{

CT0 if CM < CM0 ,
CT0 (CM/CM0)

ε otherwise.
(18)

This model is illustrated in Figure 2(b). The masking curve
is divided into a threshold range, where the target detection
threshold is independent of the masker contrast, and a masking
range, where it grows with the power of the masker contrast.
The model comprises three parameters, namely ε, CT0 and CM0 ,
which will be determined in Section V by means of subjective
experiments.

IV. Application to Watermarking

A. Lightness Function

Weber’s law generally overestimates the sensitivity to high lu-
minance values, leading to a higher visibility of the watermark
in bright areas of the image. To compensate for this effect and
to have constant watermark visibility over all image intensities,
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Fig. 2. Illustration of typical masking curves (a) and a commonly used

model (b) as defined by Eq. (18). For stimuli with different characteristics,

masking is the dominant effect (case A). Facilitation occurs for stimuli

with similar characteristics (case B).

a lightness function is applied to the image before contrast com-
putation. We use the modified log characteristic proposed by
Schreiber [18]:

B(L) = 1 + 99
log (1 + L · a)− log (1 + a)
log (1 + 100a)− log (1 + a) , (19)

where L is the luminance. This characteristic is very flexible.
For small a the relationship is approximately logarithmic, while
for large a it is almost linear. Heuristic tests by Schreiber in-
dicate that a = 0.05 provides a well-adapted luminance scale.
This value has been verified in our watermarking application for
both embedding channels.

B. Filter Design

For the computation of the local contrast according to
Eq. (17) we use directional wavelet frames as described in [1]
based on the PLog wavelet:

ψτ (~x) =
1

τ
ψ̃τ

(

~x√
τ

)

, (20)

where

ψ̃τ (x, y) =
(−1)τ

2τ−1(τ − 1)!

(

∂2

∂x2
+

∂2

∂y2

)τ

e−
x2+y2

2 . (21)

The integer parameter τ controls the number of vanishing
moments and thus the shape of the wavelet. The filter response
in the frequency domain broadens with decreasing τ . Our tests
showed that values of τ > 2 have to be avoided, because the fil-
ter selectivity becomes too low. Setting τ = 1 has been found to
be an appropriate value for our application. The corresponding
wavelet is also known as the Log wavelet or Mexican hat wavelet,
i.e. the Laplacian of a Gaussian. Its frequency response is given
by:

ψ̂(r) = r2e−
r2

2 . (22)

For the directional separation of this isotropic wavelet, we
shape it in angular direction in the frequency domain:

ψ̂jk(r, θ) = ψ̂j(r) · ηk(θ). (23)

The shaping function ηk(θ) used here is based on Schwarz func-
tions, which are infinitely differentiable and of compact support

[7]. Most importantly, they can be normalized and combined to
form the shaping function such that it satisfies

K−1
∑

k=0

|ηk(θ − 2πk/K)|2 = 1 (24)

in accordance with Eq. (17). The number of filter orientations
K is the parameter. The minimum number required by the
analytic filter constraints, i.e. an angular support smaller than
π, is three orientations. The human visual system emphasizes
horizontal and vertical directions, so four orientations should
be used as a practical minimum. To give additional weight
to diagonal structures, eight orientations are preferred. One
such analytic filter and the squared sum of all eight directional
filters are shown in Figure 3. Although using even more filters
might result in a better analysis of the local neighborhood, our
experiments indicate that there is no apparent improvement
when using more than eight orientations.

Fig. 3. One of eight analytic directional filters ψ̂jk used for the con-

trast computation (left), and the isotropic sum of all eight (right) in the

frequency domain.

Finally, the level j in the pyramidal decomposition has to
be chosen. At any individual location the watermark may be
considered a high-frequency distortion. As mentioned before,
masking is strongest when masker and target have similar fre-
quencies. Besides, contrast sensitivity is lowest for high frequen-
cies. Therefore, we focus our efforts on this region, because it
provides the greatest margin for hiding information in the im-
age. In the filters presented above, the high-frequency informa-
tion of the image is contained in the low levels. Figure 1 shows
that level 0 best emphasizes high-frequency areas in the image,
whereas the higher levels tend to smear the local contrast. The
lowest level is therefore most suitable for the computation of
contrast in our application.

C. Watermark Weights

As described by Eq. (3), the watermark is weighted with the
function α(x, y). This function takes into account all the visual
effects presented above. Once the isotropic contrast CI

0 from
Eq. (17) and the corresponding visibility thresholds CT from
Eq. (18) have been computed, α(x, y) is given by:

α(x, y) = CT (C
I
0 )(x, y) · φ0 ∗ I(x, y). (25)

The local amplitude of the watermark at the threshold of
visibility is thus determined by the multiplication of the contrast
values with the corresponding low-pass filtered image (φ0 ∗ I).
Figures 4 and 5 show examples for the images lena and man-

drill, respectively. The dark and bright areas of the images in
the left column represent the threshold and masking range of the
masking model from Eq. (18), respectively. They illustrate the
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(a) Masking for D = 0.4 (b) Weights for D = 0.4

(c) Masking for D = 1 (d) Weights for D = 1

Fig. 4. Masking model and watermark weights of the lena image for

two different density values. The dark and bright areas of the images

in the left column represent the threshold and the masking range of the

masking model, respectively. The right column shows the corresponding

watermark weights.

assignment of texture and edge regions to the masking range,
and the more uniform areas to the threshold range. One can
clearly see that the watermark is weighted based on the masking
phenomenon in most areas of the image. The right column of
the same figures shows the resulting weighting functions α(x, y).

D. Wiener Filter

As we have seen in Section II-B, the Wiener filter needs an
estimate of the local noise variance. Initially, an estimate of
the original watermark weighting function α(x, y) was used to
compute the variance estimate. However, our experiments indi-
cated that this approach is not very efficient for our particular
weighting function based on the masking model. This is due
to the fact that under strong attacks, the amplitude of the wa-
termark is heavily attenuated, and we have to detect a weak
signal in additive noise. Moreover, it can be assumed that large
watermark amplitudes are attenuated more than smaller am-
plitudes. It was found that the magnitude of the watermark
after a strong attack is approximately proportional to the local
luminance. From this we derived an efficient detector based on
a linear corrector and a linear weighting function of the form
α̃(x, y) = 1+4l(x, y), where l(x, y) is the normalized local lumi-
nance. If the original weighting function were used, the variance
of the watermark would be greatly overestimated, resulting in
a notable decrease of the Wiener filter performance.

Based on these estimates, a Wiener filter of size 5×5 is em-
ployed in the detection process. This size exhibits the same
performance as a 3×3 filter but has the added advantage of
resisting to attacks with very small low-pass filters [10].

(a) Masking for D = 0.4 (b) Weights for D = 0.4

(c) Masking for D = 1 (d) Weights for D = 1

Fig. 5. Masking model and watermark weights of the mandrill image

for two different density values. The dark and bright areas of the images

in the left column represent the threshold and the masking range of the

masking model, respectively. The right column shows the corresponding

watermark weights.

V. Subjective Experiments

The masking model defined by Eq. (18) contains parameters
ε, CT0 and CM0 . Since suitable experimental data on the mask-
ing of white noise do not exist in the scientific literature, we
carried out a number of visual experiments to determine these
parameters.
The setup for these experiments was as follows. The images

lena andmandrill were displayed at a size of 256×256 pixels on a
computer screen at a viewing distance of about 40 cm, thus ex-
tending over roughly 12 degrees of visual angle. Three subjects
with normal or corrected-to-normal vision were used for the ex-
periments. All tests were repeated for watermark densities D
ranging from 0.1 to 1 in steps of 0.1. To allow implementations
for all densities, the data were then approximated in a least-
square sense. The specific functions for these fits were chosen
independently based on each set of empirical data.

A. Luminance Masking

Embedding the watermark into the luminance channel is the
most common approach. Luminance masking data from [5] sug-
gest that CM0 ≈ CT0 , which was confirmed by our experiments.
Therefore only CT0 and ε remain to be identified. These param-
eters were determined as follows. First CT0 was measured by
varying the noise amplitude uniformly across the entire image
regardless of the image contrast. The results of this experiment
are shown in Figure 6, where the detection threshold is plot-
ted for each subject. It clearly demonstrates that the detection
threshold increases for smaller densities.
After identifying the detection threshold, ε is varied to de-
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.005

0.01

0.015

0.02

0.025

Density

   
   

  C
T 0

Subject SW   
Subject FZ   
Subject MK   
Approximation

Fig. 6. Detection threshold as a function of the density for luminance

noise. Experimental data for three subjects and a least-square approxi-

mation are shown.

termine the slope of the masking function. For the different
densities, the corresponding average detection thresholds from
the previous test were used. This time, the subjects were asked
to look for artifacts in texture areas and around edges. The test
results are shown in Figure 7. It can be seen that ε decreases
with increasing density.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Density

ε

Subject SW   
Subject FZ   
Subject MK   
Approximation

Fig. 7. Exponent of the masking model as a function of the density for

luminance noise. Experimental data for three subjects and a least-square

approximation are shown.

B. Blue-Channel Masking

The human visual system is much less sensitive to blue colors
than to others. This prompts the idea of watermarking the blue
channel of a color image instead of the luminance signal, with
the goal of embedding a watermark with higher energy at equiv-
alent visual image quality. Nevertheless, applying the concept of
masking to the blue channel requires empirical verification. It is
well known that there is an interaction between luminance and
color channels [21]. Computing the local contrast in the blue
channel would not only cause problems with images containing
no or little blue, e.g. computer generated images, but it would
also neglect inter-channel masking. Therefore it is more suitable
to use the luminance channel to compute the local contrast.
To evaluate the parameters for watermarking in the blue

channel, the same approach as for the luminance case was in-
vestigated. First, the detection threshold for white noise was
determined. The results of this experiment are shown in Fig-

ure 8. It is interesting to note that the detection threshold for
blue noise is an order of magnitude larger than for luminance
noise. This nicely illustrates the low sensitivity of the human
visual system to blue stimuli.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Density

C
T 0

Subject PF   
Subject MK   
Subject FZ   
Approximation

Fig. 8. Detection threshold as a function of the density for blue-channel

noise. Experimental data for three subjects and a least-square approxi-

mation are shown.

The second series of tests to determine ε showed that CM0 À
CT0 , contrary to the luminance-only case. We found that CM0

had approximately the same value as in the luminance case.
This makes sense because the contrast computation is actually
based on the luminance. The contrast computed from the lumi-
nance image appears to best represent the overall local activity
in the image. This result is also consistent with experimental
data from [21].
The results of the subjective tests for determining ε are shown

in Figure 9. As in the luminance case, ε decreases with increas-
ing noise density, but ε is significantly smaller for the masking
of blue noise than for luminance masking.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Density

ε

Subject FZ   
Subject MK   
Subject PF   
Approximation

Fig. 9. Exponent of the masking model as a function of the density for

blue-channel noise. Experimental data for three subjects and a piecewise

linear approximation are shown.

VI. Results

A. Watermark Energy

We have seen that the two proposed schemes, luminance wa-
termarking and blue-channel watermarking, have substantially
different masking parameters. To compare the schemes, let us
take a look at their respective noise energies and corresponding
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distortions for the lena image. The normalized noise is comput-
ed as follows:

σN =

√

1

XY

∑

x

∑

y

|w(x, y)|2. (26)

Figure 10 shows the normalized noise for the luminance and
the blue-channel watermark as a function of the density. The
curves clearly demonstrate that the blue-channel watermark
contains substantially (on average 50 times) more energy than
the luminance watermark. Furthermore, the energy remains
nearly constant over the range of densities. This means that
the watermark visibility is mainly a function of the watermark
energy and is independent of the density.
Figure 11 shows the distortion in terms of dB for the two

watermarking schemes, measured for each embedding channel.
The larger distortion in the blue channel due to the higher wa-
termark energy is evident. For the same visual quality, the
distortion in the blue channel can be 16-18 dB higher than the
distortion in the luminance channel. Like the watermark energy,
the distortion remains approximately constant for the different
embedding densities.
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Fig. 10. Normalized watermark noise as a function of the density for

luminance and blue-channel watermarking.
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Fig. 11. Image distortion due to the watermarking process as a function

of the density for luminance and blue-channel watermarking.

It should be noted that the proposed watermark weighting
function was designed for embedding an invisible watermark at

detection threshold. However, in certain applications a reduc-
tion of visual image quality may be accepted in exchange for
increased robustness. The proposed mask can easily be mod-
ified to incorporate such a variable strength watermark. The
modification consists of a simple scaling of the mask, which
may be considered as a vertical shift of the masking function.
Intuitively this makes sense because it means that the detection
threshold is increased uniformly, resulting in an overall increase
of the watermark visibility.

B. Robustness

We have seen that at equivalent visual distortion, the blue-
channel watermark contains substantially higher energy than
the luminance watermark. We now investigate the implication
of this difference by analyzing the performance of both schemes
in terms of their robustness.

When the watermarked image is not manipulated or attacked,
it is evident that blue-channel watermarking systems have a
smaller detection error probability than luminance watermark-
ing systems. This is also the case if the image undergoes ge-
ometrical transformations, is low-pass filtered, or subjected to
additive noise. For such alterations it is obviously advanta-
geous to use blue-channel watermarking. On the other hand,
we have to investigate the effects of nonlinear attacks, such as
lossy JPEG compression. The resistance to JPEG compression
may be considered a comprehensive evaluation because the algo-
rithm is adapted to the HVS. For example, JPEG compression
distorts the blue channel more than others because the human
visual system is less sensitive to it. Our blue-channel water-
mark is based on a similar premise. It should be noted that
other nonlinear attacks may lead to different results, however.

To investigate the robustness of our watermarking system
with respect to JPEG compression, tests were conducted with
the images lena and mandrill, both of size 256×256. The im-
ages were watermarked according to the luminance and the
blue-channel schemes using embedding densities of D = 0.5
and D = 1. The length of the embedded signature was set to
N = 64 bits. The value of the watermark was set to decimal
1234567890. In order to increase the statistical significance of
the test results, the tests were repeated 50 times using a dif-
ferent key for each test. The JPEG quality setting was varied
from 20% to 100% in steps of 5%.

The results for the images lena and mandrill are shown in
Figures 12 and 13, respectively. The graphs show the detec-
tion error probability as a function of the JPEG quality setting
for two watermark embedding densities. For the lena image
we observe that the blue-channel watermark can accommodate
lower quality settings (higher compression ratios) than the lu-
minance watermark for both density settings. For the mandrill

image, the behavior is different. The luminance watermark and
blue-channel watermark at D = 1 and the luminance water-
mark at D = 0.5 feature about the same robustness, whereas
the blue-channel watermark at D = 0.5 exhibits a slightly infe-
rior performance. Complete detection failure, i.e. not detecting
the watermark at all, occurs at approximately the same settings
for both schemes. It is also interesting to note that higher ro-
bustness is not necessarily achieved with a higher watermark
embedding density. This will be investigated in more detail in
the next section.

It is clear that the introduced sparse spread-spectrum water-
marking scheme is not resilient to geometrical alterations such
as scaling, rotation and cropping. As mentioned in the introduc-
tion, the goal of the paper is the introduction of a new weighting
function and not the design of an overall robust digital water-
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Fig. 12. Comparison of the robustness of luminance and blue-channel

watermarking at two embedding densities for the lena image.
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Fig. 13. Comparison of the robustness of luminance and blue-channel

watermarking at two embedding densities for the mandrill image.

marking scheme. However, there are various possible extensions
to the proposed scheme which can provide this functionality.
These extensions are based on the inclusion of a reference wa-
termark for spatial synchronization and on the concept of self-
reference, i.e. multiple watermark embedding, for resilience to
affine transformations [10].

C. Embedding Density

Most spread-spectrum based watermarking schemes employ
a watermark embedding density of D = 1., i.e. they do not use
a generalized scheme with variable density as proposed in this
paper. Considering the results derived so far, we question this
approach and ask if it may be better to use a lower density in
exchange for a higher amplitude watermark.

In order to evaluate the impact of the density on the perfor-
mance, various tests were conducted using the images lena and
mandrill, both of size 256×256. The experimental setup was
the same as in the previous section. The tests were repeated for
density values ranging from 0.1 to 1 in steps of 0.1.

The results for lena are shown in Figure 14. Comparing the
curves for luminance and blue-channel schemes, we first observe
the higher robustness of the blue-channel watermark for the en-
tire range of density values. This confirms the results from the
previous section. Furthermore, we observe that higher densities
tend to result in higher robustness. However, the best perfor-
mance is not achieved at the maximum density of D = 1. We
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Fig. 14. Impact of the watermark embedding density on the robustness

to lossy JPEG compression for the lena image. The two graphs show the

detection error probability as a function of the embedding density and

the JPEG quality setting for luminance (top) and blue-channel (bottom)

watermarking.

may therefore deduce that the watermark interferes with itself
at very high embedding density values, which results in a slight
performance decrease. For the lena image, the highest overall
robustness is achieved with an embedding density of D ≈ 0.8.
The results for mandrill are shown in Figure 15. Again the

general tendency of increased robustness for larger embedding
densities becomes evident. For this image and the blue-channel
watermark, the best performance is actually obtained for max-
imum density. Overall, however, densities close to 1 result in
approximately the same performance. As before it should be
noted that the results might be different for nonlinear attacks
other than JPEG compression.

VII. Conclusions

We presented a novel weighting method for spread-spectrum
watermarks. The approach is based on the human visual system
and takes into account its masking properties in order to mini-
mize the visual distortion and to increase the robustness of the
watermark. The masking model necessitates a local isotropic
contrast measure, which we compute from a pyramidal decom-
position using directional analytic filters. The contrast measure
and the masking model form the basis for the computation of
a weighting function for the spread-spectrum watermark. Sub-
jective experiments were carried out to find the optimal model
parameters that determine the relationship between the density
and the amplitude of the watermark. The resulting weighting
function facilitates the insertion of a higher-energy watermark
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Fig. 15. Impact of the watermark embedding density on the robustness

to lossy JPEG compression for the mandrill image. The two graphs show

the detection error probability as a function of the embedding density and

the JPEG quality setting for luminance (top) and blue-channel (bottom)

watermarking.

while maintaining the same low visual distortion as other tech-
niques. This leads to an increased robustness to various attacks.

The proposed method was used to watermark luminance im-
ages as well as the blue channel of color images. For equal image
fidelity, the amplitude of the watermark must be adapted to the
embedding density. In either case, the energy of the resulting
watermark at the threshold of visibility remains approximately
constant for all densities, i.e. the watermark energy is indepen-
dent of the embedding density. However, the blue channel can
accommodate a watermark of much higher energy than lumi-
nance.

There is not a single best watermark embedding channel for
all situations. Depending on the nature of the attack and the
image, one scheme may perform better than the other. This is
particularly true for nonlinear attacks such as JPEG compres-
sion. If the robustness to geometrical attacks, additive noise or
linear filtering is the primary concern, blue-channel watermark-
ing is the method of choice.

Finally, increased embedding densities generally result in in-
creased watermark robustness. However, due to watermark self-
interference, the best performance may not be achieved at the
maximum embedding density, but slightly below that.
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