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Abstract

Guaranteeing a certain level of quality for multimedia stream-
ing applications is quite well understood in terms of network
QoS, but it is much more tenuous in terms of perceptual quality
as perceived by the user. In this paper, we classify video qual-
ity measurement schemes and review existing approaches with
a focus on non-intrusive quality metrics, which do not require
access to the reference video. In particular, we evaluate three
different no-reference blockiness metrics and compare their per-
formance.
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1. Introduction
The development of powerful compression algorithms and the
rapid growth of network resources have facilitated the wide-
spread distribution of video and multimedia in digital form.
Keeping the bandwidth and storage requirements to a mini-
mum while maintaining good visual quality has been the pri-
ority in the design of new digital video systems, and guarantee-
ing a certain level of quality is an important concern for content
providers.

Variations in quality are due to lossy compression as well as
transmission errors, which both lead to artifacts in the received
material. The amount and visibility of these distortions strongly
depend on the actual video content. The accurate measurement
of quality as perceived by the user has become one of the great
challenges.

Naturally, the benchmark for any kind of video quality as-
sessment are subjective experiments, where a number of people
are asked to watch test clips and to rate their quality. Several
procedures for such experiments have been formalized in ITU-
R Recommendation BT.500 [2], which suggests standard view-
ing conditions, criteria for the selection of observers and test
material, assessment procedures, and data analysis methods.
The problem with subjective experiments is that they they are
time-consuming, hence expensive and often impractical. Fur-
thermore, for many applications (e.g. online quality monitoring
and control) subjective experiments cannot be used at all.

Given these limitations, engineers have turned to simple er-
ror measures such as mean squared error (MSE) or peak signal-
to-noise ratio (PSNR), suggesting that they would be equally
valid. However, these simple measures operate solely on the
basis of pixel-wise differences and neglect the imact of video

content and viewing conditions on the actual visibility of arti-
facts. Therefore, their predictions often do not agree well with
perceived quality.

Another way to perform objective measurements of data
transmission is looking at bit error rate (BER), packet loss ratio
(PLR) and other network-related parameters. Establishing and
maintaining a certain level of network quality of service (QoS)
for different applications is a very active research area at the
moment [5,12], but again the measurements and protocols used
there are oblivious to the actual content being transmitted over
the network and have no direct relation to the video quality as
perceived by the user.

2. Video Quality Metrics
The shortcomings of these methods led to the study of more
advanced perceptual quality metrics in recent years. An up-to-
date review of such metrics can be found in [17]. In principle,
two different approaches can be distinguished:

Approaches based on models of the human visual system
are the most general and potentially most accurate ones [15].
Examples of such metrics are described in [4,9,16] among oth-
ers. However, the human visual system is extremely complex,
and many of its properties are not well understood even today.
Besides, implementing these models is computationally expen-
sive due to their complexity.

On the other hand, metrics need not necessarily rely on gen-
eral models of the human visual system; they can exploit a priori
knowledge about the compression and transmission methods as
well as the pertinent types of artifacts using ad-hoc techniques
or simple specialized vision models. Examples of such special-
ized metrics include [8, 14]. While such metrics are not as ver-
satile, they normally perform well in a given application area.
Their main advantage lies in the fact that they often permit a
computationally more efficient implementation.

Several of these video quality metrics were compared
against subjective ratings for a well-defined set of test se-
quences in an ambitious performance evaluation undertaken
by the Video Quality Experts Group (VQEG). The work and
findings of VQEG are described in [7] and in the group’s fi-
nal report [11] in more detail. Consult VQEG’s web site
http://www.crc.ca/vqeg/ for an overview of its current
activities.

2.1. Out-of-Service vs. In-Service Metrics

The emphasis of most metrics today is out-of-service testing
(see Figure 2), where the full reference video is available to
the metrics. This is quite a severe restriction on the kind of
applications such a metric can be used for, however.

http://www.crc.ca/vqeg/
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Figure 1: Non-intrusive/no-reference (left) and intrusive/reduced-reference (right) in-service testing setup.
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Figure 2: Out-of-service testing of a system.

In-service metrics, which are designed to monitor and con-
trol systems while they are in operation, are much more power-
ful. They can be used to carry out measurements at practically
any point of the transmission chain. This is a particularly im-
portant issue in multimedia streaming applications. The setup
can be intrusive or not, depending on the objective of the test
and the nature of the testing methodology; Figure 1 illustrates
both cases. The corresponding metrics are often referred to as
reduced-reference and no-reference metrics, respectively.

The fact that the full reference video is usually not avail-
able for comparison makes an accurate assessment much more
difficult for in-service metrics. Therefore, the algorithms are
generally based on some a priori knowledge about the scene
content, the compression method and/or the expected artifacts.
Several methods have been proposed recently [1, 19]. Most of
them aim at identifying certain features in a scene and assessing
their distortion. They also take into account knowledge of the
compression method and the corresponding artifacts (a detailed
overview of typical video compression artifacts and their causes
can be found in [22]).

3. Blockiness Metrics
One of the most common artifacts in compressed video is block-
iness. Blockiness manifests itself as the appearance of a block
structure in the video. It is caused by block-based coding
schemes such as H.261, H.263, MPEG-1, MPEG-2 and MPEG-
4, which compute the DCT on every 8×8 block in the image and
quantize each block’s coefficients separately.

A number of blockiness metrics have been proposed [3, 6,
21], but these techniques require access to the reference image
or video. We have implemented three no-reference blockiness
metrics recently proposed in the literature:

3.1. Vlachos Metric

Vlachos [10] uses an algorithm based on the cross-correlation
of subsampled images. The sampling structure is chosen such
that every sub-image contains one specific pixel from each 8×8
block. Four sub-images are constructed from the four corner
pixels of each block. Four more sub-images are constructed
from four neighboring pixels in the top left corner of each
block. Finally, the cross-correlations among the former four

sub-images are normalized by the cross-correlations among the
latter four sub-images to yield a measure of blockiness.

3.2. Wang-Bovik-Evans Metric

Wang, Bovik and Evans [13] model the blocky image as a non-
blocky image interfered with a pure blocky signal. They apply
1-D FFTs to horizontal and vertical difference signals or rows
and columns in the image to estimate the average horizontal and
vertical power spectra. Peaks in these spectra due to 8×8 block
structures are identified by their locations in the spectra. The
power spectra of the underlying non-blocky images are approx-
imated by median-filtering these curves. The overall blocki-
ness measure is then computed as the difference between these
power spectra at the locations of the peaks. The integration of
visual masking effects is briefly described as well.

3.3. Wu-Yuen Metric

Wu and Yuen [20] measure the horizontal and vertical differ-
ences between the columns and rows at all 8×8 block bound-
aries. Weights for taking into account perceptual luminance-
and texture-masking effects are derived from the means and
standard deviations of the blocks adjacent to each boundary.
The resulting measure is normalized by an average of the same
measures computed at non-boundary columns and rows.

3.4. Experiments and Discussion

To verify and compare these blockiness metrics, test clips de-
scribed in [18] were used. The test scenes are taken from the
VQEG set [11] and are 8 seconds long with a frame rate of
25 Hz. They were de-interlaced and subsampled to a resolu-
tion of 360×288 pixels per frame for progressive display on a
computer screen. The Microsoft MPEG-4 codec (version 2) at
1 Mb/s and the Sorenson Video codec (version 2.11) at 2 Mb/s
were used to create the test sequences. Sample frames from the
”racecar” clip are shown in Figure 3.

The results produced by our implementation of the three
above-mentioned blockiness metrics are shown in Figure 4. We
have run the algorithms also on the uncompressed clip for com-
parison purposes. Perceptually, the test sequence starts out prac-
tically devoid of blocking artifacts; blocks start appearing about
halfway through, peaking soon after and decreasing slightly to-
wards the end. The uncompressed clip exhibits no blockiness at
all. The evolution over time predicted by the blockiness metrics
thus corresponds quite well to perceived blockiness.

On the other hand, two of the three algorithms rate the
blockiness produced by the Sorenson codec significantly lower
than the MPEG-4 codec, while visually the opposite is true. An
explanation for this is that the extreme blocking artifacts pro-
duced by the Sorenson codec remove many of the intensity dif-
ferences at block boundaries which the algorithms rely on. Fur-



thermore, it adds many blocks of size 16×16, while the algo-
rithms are tuned for 8×8 blocks. The sharp drops at frame num-
bers 125, 150 and 175 for this sequence are due to the keyframe
interval of 1 second, and an inspection of these frames reveals
that they really exhibit no blocking artifacts.

Vlachos’ metric shows the least distinction between the un-
compressed and the compressed sequences. However, it must
be noted that we chose to implement the cross-correlations in a
different manner, which may be responsible for this below-par
prediction performance.

One common drawback of all three blockiness metrics is
that the exact location of block boundaries must be known. Spa-
tial shifts of the block structure with respect to the origin are
assumed to be zero, which may not always be the case. Like-
wise, blocks not aligned with the 8×8 grid will not be recog-
nized. Furthermore, none of the metrics are explicitly targeted
at video, as they process each frame separately. Thus, the effect
of motion on block visibility in video is not taken into account.

4. Conclusions
Perceptual quality measurement has become a very active area
of research. Full-reference out-of-service metrics are rather
well established; current efforts focus on reduced- and no-
reference metrics, which are required for in-service measure-
ment, monitoring and control. While most existing video qual-
ity metrics still focus on television production and broadcast,
some are beginning to target multimedia applications, which are
much less constrained. The algorithms and metrics reviewed in
this paper represent important steps towards comprehensive no-
reference video quality metrics.
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(a) Uncompressed

(b) Microsoft MPEG-4 codec

(c) Sorenson Video codec

Figure 3: Frame from ”racecar” test clip.
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(a) Vlachos metric [10]
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(b) Wang-Bovik-Evans metric [13]
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(c) Wu-Yuen metric [20]

Figure 4: Comparison of blockiness metrics.


